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ABSTRACT

The military’s dependence on fossil fuels for electric power production in isolated settings
is both logistically and monetarily expensive. Currently, the Department of Defense is ac-
tively seeking alternative methods to produce electricity, thus decreasing dependence on
fossil fuels and increasing combat power. We believe piezoelectric generators have the
ability to contribute to military applications of alternative electrical power generation in
isolated and austere conditions. In this paper, we use three and six variable mathematical
models to analyze piezoelectric generator power generation capabilities. Using mk factorial
sampling, nearly orthogonal and balanced Latin hypercube (NOBLH) design, and NOBLH
iterative methods, we find optimal solutions to maximize piezoelectric generator power
output. We further analyze our optimal results using robustness analysis techniques to de-
termine the sensitivity of our models to variable precision. With our results, we provide
analysts and engineers the optimal designs involving material parameters in the piezoelec-
tric generator, as well as the generator’s environment, in order to maximize electric output.
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CHAPTER 1:
Introduction

1.1 Motivation
"Unleash us from the tether of fuel."

-Lieutenant General Jamis Mattis,
Future Fuels, Naval Research
Advisory Committee Report

April 2006

During the past decade of conflict, service members on bases across Iraq and Afghanistan
could hear the constant hum of diesel generators. These thirsty machines provide the base’s
electric lifeblood enabling lighting, refrigeration, life-support heating and cooling, battery
charging, and equipment operation. Years of conflict proved our dependence on fossil fuels
comes with a cost. A constant consumption of diesel fuel requires a hefty logistics tail
to provide fossil fuels to every base across the area of operations. During Operation Iraqi
Freedom and Operation Enduring Freedom an Army study found that, for every 24 convoys
sent out, one service member or civilian engaged in fuel transport was killed. Additionally,
due to transportation cost of fossil fuels to isolated bases, the price of fuel escalates from
approximately one dollar per gallon to, in some cases, 400 dollars per gallon [1].

The source of electricity generation service members depend on decreases combat capabil-
ity. Military forces are taken away from combat operations and nation building to guard
and operate convoys. Dollars spent on expensive fossil fuels are better allocated to support
service members and operations. Additionally, expeditionary forces do not have the ability
to transport heavy fuels. Their dependence on fossil fuels for power generation inhibits
their ability to conduct operations.

This paper attempts to improve upon an alternative method of producing electricity while
in austere conditions without the necessity of fossils fuels and their accompanying logistics
tail.
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Figure 1.1: Soldier guarding fuel convoy after attack [2].

1.2 Piezoelectricity Definition and History

The name “piezo” is derived from the Greek piezo or piezein, meaning “to squeeze or
press” [3]. Piezoelectricity is pressure-driven electricity. Certain materials generate elec-
tricity when under pressure (mechanical stress). These same materials change shape when
electricity is applied to the material. A common use of the piezoelectricity phenomenon is
demonstrated in quartz watches. A battery in the watch feeds electricity to a piezoelectric
quartz crystal. The electricity induces a precise vibration in the quartz. The mechanisms in
the watch then convert the quartz vibrations into a means of keeping accurate time.
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Figure 1.2: Piezoelectric quartz crystal resonator used for time keeping [4].

In 1880, two French physicists, Pierre and Jacques Curie, found that in certain materials,
such as zinc blende, sodium chlorate, boracite, tourmaline, cane sugar, Rochelle salt, and
quartz, mechanical stresses induce macroscopic polarization and hence the production of
electric surface charges. The following year, Gabriel Lippmann predicted the converse
effect from fundamental thermodynamic principles, that is, an imposed voltage produces
mechanical deformations or strains of the material [5]. In 1882, the Curie brothers con-
firmed the existence of the converse effect based on experimental observations [3].

Pierre Curie used the piezoelectric effect to measure charges emitted by radium, but piezo-
electricity was not used for practical applications for several decades. During World War I,
Paul Langevin developed piezoelectric crystal quartz transducer depth sounding devices to
locate submerged vessels, primarily German submarines [6]. In the 1920s, developments
in crystal resonators for the stabilization of oscillators launched the field of frequency of
control. The introduction of quartz control drastically changed the way humans keep time.
Today, piezoelectric applications include smart materials for vibration control, aerospace
and astronautical applications of flexible surfaces and structures, sensors for robotic appli-
cations, and novel applications for vibration reduction in sports equipment (tennis racquets
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and snowboards) [5]. Recently, scientists have focused research on using piezoelectric
materials for energy generation [7]–[14].

1.3 How Piezoelectricity Works
The separation of positive and negative electrical charges in many molecules results in
what is known as a dipole moment. In piezoelectric crystals, when a mechanical stress is
applied (the crystal being compressed, twisted, or pulled) the molecular dipole moments
re-orient themselves. This re-orientation causes a variation in surface charge density and
thus produces voltage. The effect is illustrated in Figure 1.3 for forces normal to the mate-
rial. Conversely, when an electric field is applied across a piezoelectric medium, there is a
slight change in the shape of the dipoles causing a very small, but significant change in the
material dimensions.

Figure 1.3: Illustration of the piezoelectric concept [3].
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1.4 Applications of Piezoelectric Power Generation
Using the converse piezoelectric effect, it is possible to generate electricity by deforming
piezoelectric materials. However, piezoelectric generation is far from the most efficient
method of power generation. Presently, piezoelectric generators can only produce small
amounts of electricity, but with the increase of efficiency of powered devices, piezoelectric
power generation has become a possible supply of electricity for certain devices.

Devices well suited for piezoelectric power supply include the following:

• devices with low power requirements
• devices without power supplies in close proximity
• devices without easy access to a power supply (power lines are inconvenient or im-

possible)
• devices without access to other alternative power sources (solar, wind, geothermal)
• devices with access to vibrations or other mechanical manipulation

The most obvious device that meets the above criteria is a sensor. Sensors are often located
far from power sources, concealed from light sources, and require power to collect and
send information. It is not always possible or convenient to connect power to the sensors
by wire. Examples of sensors that could receive power through piezoelectric generation
include sensors in air ducts [15], tires, and inside machinery.

Piezoelectric power generation has the potential to enhance military operations as well.
Military units often operate in primitive/isolated environments where it is not practical to
transport conventional fuel to generate electricity. Military units must rely on alternative
methods of power generation or do without. In addition to solar and wind power genera-
tion, service members could generate power with piezoelectric power generators fixed to
personnel, equipment, or any other item in motion.

1.5 Research Objectives
This paper attempts to find the optimal designs involving material parameters in the piezo-
electric generator, as well as the generator’s environment, in order to maximize electric
output.

5



1.6 Thesis Organization
This chapter introduced the motivation and relevant background of harvesting piezoelectric
energy. In Chapter 2, we review a one-dimensional power generation model and study how
to optimize power generation using variables in the model. From the results of Chapter 2
we derive a three-variable power generation model. In Chapter 3, we derive a six-variable
power generation model using a single mode model. In Chapter 4, we describe the various
methods we use in order to optimize our three-variable and six-variable power generation
models. In Chapter 5, we discuss the results of our optimization methods and the robust-
ness of our results. In Chapter 6, we conclude the paper and discuss further studies to be
completed based on the information and ideas generated in this paper. Finally, we include
an appendix to display MATLAB code used for calculations within the paper.
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CHAPTER 2:
One-Dimensional Power Generation Model:

Derivation of the Three Variable Model

2.1 1-D Model Design: Interpretation Scheme
We can use a basic 1-D model to analyze the power generated from a vibration energy
harvester to understand conversion. This model is limited to harvesters where the electri-
cal damping term is linear and proportional to velocity. Nevertheless, this simple model
is useful in understanding the feasibility of the device and input parameters on power ex-
tracted. The electrical energy is extracted from the mechanical system, which is excited
by a mechanical input. This extraction is not necessarily linear, or proportional to velocity,
however, it is a dissipative process and can generally be viewed as electrical damping.

Following [16], we consider a generator (shown in Figure 2.1) which consists of a seismic
mass m on a spring k. When the generator is vibrated, the mass moves out of phase with the
generator housing, so that there is a net movement between the mass and the housing. This
relative displacement is sinusoidal in amplitude, and can drive a suitable transducer to gen-
erate electrical energy. The transducer is depicted as a dashpot, d, because the conversion
of mechanical energy into electrical energy damps the mass. There are several transduction
methods suitable for the generator. The choice of transducer makes little difference to the
amount of electrical power that will be generated. Three possible transduction mechanisms
are (1) piezoelectric: using piezoelectric material to convert strain in the spring into elec-
tricity; (2) electromagnetic: a magnet attached to the mass induces a voltage in a coil as it
moves; and (3) electrostatic: an electric arrangement with a permanent charge embedded
in the mass induces a voltage on the plates of a capacitor as it moves.

7



Figure 2.1: A schematic diagram of the generator [17].

In the simplified model, we assume that the mass of the vibration source is much bigger
than the mass of the seismic mass in the generator, and the vibration source is an infinite
source of power. This implies that the vibration source is unaffected by the movement of
the generator.

The differential equation of motion can be derived from the dynamic forces on the mass:

mz′′ (t)+dz′ (t)+ kz(t) =−my′′ (t) (2.1)

where the generator housing is vibrated with a displacement y(t), the relative motion of the
mass with respect to the housing is z(t), m is the seismic mass, d is the damping constant,
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and k is the spring constant. The solution to this second-order ordinary differential equation
(ODE) with constant coefficients consists of two parts, the complementary function, which
is the solution of the corresponding homogeneous equation, and the particular solution. The
complementary function, in this case, is a damped free vibration which goes to zero as time
increases. The particular solution is the one of interest here. For a sinusoidal excitational
vibration, y(t) = Y0cos(ωt), the particular solution to the preceding ODE is a steady-state
oscillation of the same frequency, ω , as that of the excitation. We can assume the particular
solution to be of the form

z(t) = Acos(ωt−φ) (2.2)

where A is the amplitude of oscillation and φ is the phase of the displacement with respect
to the exciting force.

Differentiating Equation (2.2) yields

z′ (t) =−Aω sin(ωt−φ) , (2.3)

z′′ (t) =−Aω
2 cos(ωt−φ) . (2.4)

Substituting the above equations into Equation (2.1) we have

−Amω
2 cos(ωt−φ)−Adω sin(ωt−φ)+Ak cos(ωt−φ) = mY0ω

2 cos(ωt) . (2.5)

Utilizing the trigonometric identities cos(ωt − φ) = cos(ωt)cos(φ) + sin(ωt)sin(φ) and
sin(ωt−φ) = sin(ωt)cos(φ)− cos(ωt)sin(φ) we can rewrite Equation (2.5) as

−Amω2 cosωt cosφ −Amω2 sinωt sinφ −Adω sinωt cosφ +Adω cosωt sinφ

+Ak cosωt cosφ +Ak sinωt sinφ = mY0ω2 cos(ωt) .
(2.6)

Matching the coefficients for cos(ωt) and sin(ωt), respectively, we find

(
Ak−Amω

2)cosφ +Adω sinφ = mY0ω
2, (2.7)

(
k−mω

2)sinφ −dω cosφ = 0. (2.8)
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This leads to
tanφ =

dω

k−mω2 , (2.9)[(
k−mω

2)cosφ +dω sinφ
]

A = mY0ω
2, (2.10)[(

k−mω
2)+dω tanφ

]
A = mY0ω

2 secφ = mY0ω
2
√

1+ tan2φ . (2.11)

Solving for A, we obtain

A =
mY0ω2

√
1+ tan2φ

(k−mω2)+dω tanφ
=

mY0ω2

√
1+
(

dω

k−mω2

)2

(k−mω2)+dω

(
dω

k−mω2

) =
mY0ω2

√
(k−mω2)

2
+(dω)2

(k−mω2)
2
+(dω)2 ,

(2.12)

A =
mY0ω2√

(k−mω2)
2
+(dω)2

. (2.13)

We now express the amplitude and phase in non-dimensional form. Dividing the numerator
and denominator by k, we get

tanφ =
dω

k−mω2 =
dω

k

1− mω2

k

, (2.14)

A =
Y0

mω2

k√(
1− mω2

k

)2
+
(dω

k

)2
. (2.15)

These expressions can be further expressed in terms of the following quantities where ωn

is the natural frequency of undamped oscillation (resonant angular frequency), dc is critical
damping, and ζ is the modal damping ratio:

ωn =

√
k
m
, (2.16)

dc = 2mωn, (2.17)

dω

k
=

d
dc

dcω

k
= 2ζ

ω

ωn
, (2.18)
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k
dc

=
k

2mωn
=

k/m

2
√

k
m

=
1
2

√
k
m

=
ωn

2
. (2.19)

The non-dimensional formulas for the amplitude and phase then become

tanφ =
2ζ

ω

ωn

1−
(

ω

ωn

)2 , (2.20)

A
Y0

=

(
ω

ωn

)2

√(
1− ω2

ωn2

)2
+
(

2ζ
ω

ωn

)2
. (2.21)

The instantaneous power transfer in the mass is the product of the force on the mass and its
velocity:

p(t) =−my′′ (t)
[
y′ (t)+ z′ (t)

]
. (2.22)

When damping is present, due to the electrical transducer, there is a net transfer of mechan-
ical power into electrical power. This net electrical power generated, P, is

P =
1
T

T∫
0

p(t)dt =
1
T

T∫
0

mω
2Y0 cos(ωt) [−Y0ω sin(ωt)−Aω sin(ωt−φ)]dt, (2.23)

P =
1
T

T∫
0

mAω
3Y0 sinφcos2 (ωt)dt =

1
T

T∫
0

mAω
3Y0 sinφ

1+ cos(2ωt)
2

dt, (2.24)

P = mY0ω
3 A

2
sinφ . (2.25)

Substituting in Equation (2.21) for A, we obtain:

P = mY0
2
ω

3

(
ω

ωn

)2

2

√(
1− ω2

ωn2

)2
+
(

2ζ
ω

ωn

)2

1√
1+ cot2φ

, (2.26)
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P = mY0
2
ω

3

(
ω

ωn

)2

2

√(
1− ω2

ωn2

)2
+
(

2ζ
ω

ωn

)2

1√
1+
[

1−( ω

ωn )
2

2ζ
ω

ωn

]2
, (2.27)

P =
mY0

2ω3
(

ω

ωn

)2
ζ

ω

ωn(
1− ω2

ωn2

)2
+
(

2ζ
ω

ωn

)2 =
mζY0

2
(

ω

ωn

)3
ω3(

1− ω2

ωn2

)2
+
(

2ζ
ω

ωn

)2 . (2.28)

We now have an explicit expression for net electric power generated we can conduct analy-
sis on. In the following sections we first view the output power as a function of normalized
frequency and investigate how the output power behaves as we vary normalized frequency
for various values of the modal damping ratio. After that, we treat the output power as
a multi-variable function of both normalized frequency and modal damping ratio, seeking
the optimal value of the output power. Then, we compare our model prediction with an
experimental result.

2.2 Power as a Function of Normalized Frequency
First, we will treat net electric power generated, P, as a function of normalized frequency
only. To do this, we will introduce C = mζY 2

0 ω3
n and x = ω

ωn
to get the function

P(x) =C
x6

(1− x2)
2
+(2ζ x)2 . (2.29)

In order to optimize the function we differentiate P(x) with respect to x:

P′ (x) =
2Cx5 [x4−4x2 +8ζ 2x2 +3

]
(x4 +4ζ 2x2−2x2 +1)2 . (2.30)

By inspection, we can see if ζ = 0, P′(x) does not exist when x = 1. In fact, P(1) becomes
infinitely large. If ζ 6= 0, the critical points of P(x) depend on the value of ζ .
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2.2.1 Initial Analysis
We will fix values for ζ and find the value of x that maximizes P(x). Like Williams and
Yates [17], we will analyze P(x) with ζ values of 0.1,0.3,0.5, and 0.7.
For ζ = 0.1,

P′ (x) =
2Cx5 [x4−3.92x2 +3

]
(x4−1.96x2 +1)2 . (2.31)

Solving P′(x) = 0 yields critical points x =±1.6963,±1.0211. Recall that x = ω

ωn
≥ 0. For

ζ = 0.1, we plot P(x)
C as a function of x in an interval containing the critical points in Figure

2.2.

Figure 2.2: Power as a function of frequency with ζ = 0.1.

From Figure 2.2, we can see that the maximum power can be generated when x = ω

ωn
=

1.0211 for ζ = 0.1, and the maximum value of P(x)
C is 26.0421.
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For ζ = 0.3,

P′ (x) =
2Cx5 [x4−3.28x2 +3

]
(x4−1.64x2 +1)2 . (2.32)

Solving P′(x) = 0 yields four complex roots. The critical point is x = 0. Now we plot P(x)
C

for ζ = 0.3 in Figure 2.3.

Figure 2.3: Power as a function of frequency with ζ = 0.3.

Figure 2.3 shows when ζ = 0.3, P(x)
C is an increasing function of x.
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For ζ = 0.5,

P′ (x) =
2Cx5 [x4−2x2 +3

]
(x4− x2 +1)2 . (2.33)

Solving P′(x) = 0 yields four complex roots. The critical point is x = 0. Now we plot P(x)
C

for ζ = 0.5 in Figure 2.4.

Figure 2.4: Power as a function of frequency with ζ = 0.5.

Figure 2.4 shows when ζ = 0.5, P(x)
C is an increasing function of x.
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For ζ = 0.7,

P′ (x) =
2Cx5 [x4−0.08x2 +3

]
(x4−0.04x2 +1)2 . (2.34)

Solving P′(x) = 0 yields four complex roots. The critical point is x = 0. Now we plot P(x)
C

for ζ = 0.7 in Figure 2.5

Figure 2.5: Power as a function of frequency with ζ = 0.7.

Figure 2.5 shows when ζ = 0.7, P(x)
C is an increasing function of x.
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2.2.2 Analysis as ζ Approaches Zero
One will notice only ζ = 0.1 resulted in a critical point other than x = 0. Let us evaluate
the critical points and corresponding optical P(x)

C when ζ < 0.1. For ζ = 0.05,

P′ (x) =
2Cx5 [x4−3.98x2 +3

]
(x4−1.99x2 +1)2 . (2.35)

Solving P′(x) = 0 yields critical points x =±1.7233,±1.0051. For ζ = 0.05, we plot P(x)
C

as a function of x in an interval containing the critical points in Figure 2.6.

Figure 2.6: Power as a function of frequency with ζ = 0.05.

From Figure 2.6, we can see that the maximum power can be generated when x = ω

ωn
=

1.0051 for ζ = 0.05, and the maximum value of P(x)
C is 101.01.
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It appears as ζ approaches zero, the optimal value of x approaches one and the resulting
maximum power generation, P(x)

C , increases. See Figures 2.7 and 2.8 for further illustration
of the how the optimal x value and maximum power generation change as ζ decreases.

Figure 2.7: Optimal x as a function of ζ .

Figure 2.7 further depicts the optimal frequency ratio ( ω

ωn
) approaching one as ζ approaches

zero. This follows the principal of resonance, where a vibration is able to drive a sys-
tem into larger oscillations when the vibration frequency matches the system’s natural fre-
quency (ω = ωn).
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Figure 2.8: P(x)
C as a function of ζ .

Figure 2.8 demonstrates that when we set ω = ωn, P(x)
x depends solely on how small we

can set ζ .

2.3 Power as a Function of Modal Damping Ratio and
Normalized Frequency

We will now treat net electric power generated, P, as a function of both modal damping
ratio, ζ , and frequency ratio, x = ω

ωn
. We can graphically solve for the optimal value of

P(x)
C by plotting P(x)

C as the dependent variable and using ζ and x = ω

ωn
as the independent

variables. If we use the parameters 0.1 ≤ ζ ≤ 1 and 0 < x ≤ 2, we get the plot in Figure
2.9.
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From Figure 2.9 we can see the extreme value of P(x)
C increases as ζ goes to zero and x goes

to one.

Figure 2.9: Power as a function of damping factor and frequency (0.1≤ ζ ≤ 1 and 0 < x≤ 2)
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The extreme value of net electric power generated is further illustrated in Figure 2.10 with
parameters 0.05≤ ζ ≤ 1 and 0 < x≤ 2.

Figure 2.10: Power as a function of damping factor and frequency (0.05≤ ζ ≤ 1 and 0 < x≤ 2).

2.4 Model Comparison with Experimental Results
Roundy and Wright [15] use similar mathematical methods to design and test a piezoelec-
trical vibration based generator. Their design uses an 8.44 gram mass and a two-layer sheet
of PZT-5A with a steel center shim excited by vibrations of 2.5m s−2 at 120Hz. They
assume the resonance frequency of their generator, ωn, matches the driving frequency, ω .
The damping ratio, ζ , is measured by applying an impulse to the system, and then measur-
ing the open circuit voltage output. The resulting damped harmonic oscillation is used to
calculate a damping ratio near 0.015 [15]. Figure 2.11 shows the piezoelectric generator

21



designed by Roundy and Wright.

Figure 2.11: Piezoelectric generator prototype used by Roundy and Wright [15].

With these parameter values, we can compute the power generated using our ODE model.
All red text below are values taken from the Roundy and Wright generator model.

ω = ωn = (2π)120Hz =
240π

second
(2.36)

x =
ω

ωn
= 1 (2.37)

ζ =
d
dc

=
d

2mωn
= 0.015 (2.38)

m≈ 8.44grams = 8.44×10−3kg (2.39)

acceleration =
2.5m

second2 (2.40)

Amplitude = Y0 =
acceleration

ω2 =
2.5m

second2( 240π

second

)2 = 3.518×10−6m (2.41)
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C = mζY 2
0 ω

3
n = (8.44×10−3kg)(0.015)(3.518×10−6m)2

(
240π

second

)3

(2.42)

C =

(
1.0494×10−6kg ·m2

second3

)
(2.43)

Substituting values given from Roundy and Wright and values calculated above into Equa-
tion (2.29), we get:

P(1) =
(

1.0494×10−6kg ·m2

second3

)
1

(2(.015))2 =
1.2×10−3kg ·m2

second3 . (2.44)

The corresponding result from Roundy and Wright is

P(1)≈ 3.75×10−4kg ·m2

second3 . (2.45)

Roundy and Wright’s experiment results in power 68.75% less than our mathematical re-
sults. The disparity between our ODE model calculation and Roundy and Wright’s exper-
imental results can be explained through the fact our model is purely mechanically based
and does not take into account loss of energy through the transfer of mechanical energy
to electrical energy. Despite the power disparity, Roundy and Wright’s results support our
ODE model.

2.5 One-Dimensional Power Generation Model Conclu-
sion

Our 1-D model shows potential to serve as a foundation to optimize power generated by
a piezoelectric generator. In order to optimize power generated, P(x)

C , we should minimize
the damping factor, ζ , and choose the optimizing frequency ratio, x = ω

ωn
. Keep in mind

that as ζ approaches zero the optimal frequency ratio approaches one and the maximum
power generated drastically increases.
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CHAPTER 3:
Single-Mode Model:

Derivation of the Six Variable Model

There are many studies on the transduction of electrical energy from a single piezoelectric
transducer (see [18] and references therein) and the general conclusion is that piezoelectric
energy harvesting approaches have considerable promise for applications involving small
amounts of power [19]. To boost the power output of such system, one proposal by Scruggs
[20] is to use multiple transducer patches and channel energy generated by some of the
patches into other patches in order to excite additional vibration modes. An example of
this type of energy harvesting system is depicted in Figure 3.1. The parameters describing
the size of a piezoelectric patch take the typical values l1 ≈ l2 ≈ l3 = 100mm, w = 25mm,
tp = 0.25mm and the thickness of the beam is tb = 0.25mm [21].

Figure 3.1: Energy harvesting bimorph cantilever with distributed piezoelectric transducers (gray)
bonded to a substrate (white). Adapted from Dutoit, Wardle and Kim [16].
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The general equations for linear piezoelectricity are shown in Figure 3.2.

Figure 3.2: General equations for linear piezoelectricity [20].
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The constitutive relation in Figure 3.2 is for material that is electrically and mechanically
isotropic in the 1 and 2 directions, while the 3-direction is the poling direction. The first
three rows of the constitutive relation relate the electrical displacement to the electrical field
and to the strain in the material, and the remaining six rows relate the mechanical stress to
the electric field and to the strain. Here the stress, T (x), and strain, S(x), are represented in
Voigt notation or Voigt form. Referring to the Figure 3.1 above, 1 corresponds to x and 3
corresponds to y.

Equations for a patch on a beam are largely based on Euler-Bernoulli (or Timoshenko)
beam models. Piezoelectric layers or patches are bonded to the both sides of the beam. The
beam is assumed to be in pure bending; all other deformations are considered negligible.
Here we consider a “bimorph” configuration. That is, in the undisturbed state the beam lies
along the x-axis in a < x < b,− tb

2 < y < tb
2 ,−

w
2 < z < w

2 , with equal patches on its upper
and lower surfaces y = ± tb

2 , each of thickness tp and covering the entire upper and lower
surfaces. It is further assumed that the patches are bonded perfectly to the substructure
and the electrodes cover their entire upper and lower surface areas. The beam is clamped,
at x = a, on a base that is subject to motion in the y-direction; it is free at x = b. The
polar direction on the top patch is in the y-direction and on the bottom patch it is reversed
so that the voltages on the two patches add. Due to this asymmetry, we can compute the
piezoelectric effect on the upper patch alone and double the result.

Adopting the standard assumptions of Euler-Bernoulli beam theory, a balance of forces and
moments can be combined to yield

−Mxx = m(ωtt +htt) . (3.1)

where M(x, t) is the internal moment generated by mechanical and electrical strain, m is the
mass per unit length of the composite beam, ω is the relative vertical deflection along the
beam from the base, and h is the absolute motion of the base/host structure (thus w+ h is
the absolute displacement of the beam). The Euler-Bernoulli bending deformation model
relates the stress to the curvature of the beam:

S1 =−yωxx (3.2)
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The constitutive relations yield T1 = c11S1∓ e31E3, D3 = ±e31S1 + e33E3 (the sign of
the coupling terms may vary from patch to patch depending on whether they are poled
in the positive y or negative y direction). Additionally, it is assumed that the electrical
field is constant throughout the thickness of the patches; therefore, E3 =±

vp
tp

with the sign
depending on the poling direction, where vp is the terminal voltage on the top of the top
patch with thickness tp.

The relation between moment and stress is:

M =−w

tb
2∫

− tb
2

T1ydy−w


tb
2 +tp∫
tb
2

T1ydy+

− tb
2∫

− tb
2 −tp

T1ydy

 [H (x−a)−H (x−b)] , (3.3)

M = c11w
tb3

12
ωxx− e31w

tb + tp

2
[H (x−a)−H (x−b)]vp ·2, (3.4)

where w is the width of both the beam and the piezo patches and H denotes the Heaviside
step function.

When the electric field is normal to the beam axis and uniform in the patch over a < x <

b and zero outside this interval, the piezoelectric effect contribution to the displacement
equation enters as derivatives of delta functions at the ends of each patch [22]:

mωtt +

(
c11w

tb3

12

)
ωxxxx + e31w(tb + tp)

[
δ
′ (x−b)−δ

′ (x−a)
]

vp =−mhtt . (3.5)

The boundary conditions for equation (3.5) are ω(a, t) = ωx(a, t) = 0. This reflects the fact
that the beam is clamped at x = a, but at the free end, x = b, we have M = Mx = 0. The
size of the charge can be found by integrating the Gauss’ law over the surface area of the
electrodes [22]:

q(t) =
∫∫

upper
D3dA−

∫∫
lower

D3dA = e31w(tp + ts) [ωx]

∣∣∣∣∣ b

a
− 2ε33

tp
w(b−a)vp . (3.6)

Equations (3.5) and (3.6) provide a complete system of equations for the vibration energy
harvester. The most common method of solving the system (3.5-3.6) is to assume that the
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beam deflection can be represented by an eigenfunction expansion

ω (x, t) =
∞

∑
i=1

φi (x)ui (t), (3.7)

where φi(x) is the i-th mode shape function and ui(t) is the i-th modal displacement. The
mode shape functions must satisfy the boundary conditions and follow the following or-
thogonality relationships:

b∫
a

φi (x)φ j (x)dx = δi j. (3.8)

Substituting (3.7) into (3.5), multiplying both sides by φk(x), and integrating x from a to b

yields for each k, we arrive at

uk
′′ (t)+

[
wSC,k

2]uk +Akvp =−m [γk]h′′ (t) , (3.9)

where Equation (3.10) is the modal short-circuit frequency, Equation (3.11) is the modal
electromechanical coupling coefficient, and Equation (3.12) is the modal influence coeffi-
cient of the base excitation.

wSC,k = λk
2

√
c11wtb3

12m(b−a)4 (3.10)

where λk is the eigenvalue corresponding to φk(x); for cantilevered configurations, these
numbers are the solutions to cos(λ )cosh(λ ) = 1

Ak = e31w(tb + tp)
[
φk
′ (x−b)−φk

′ (x−a)
]
, (3.11)

γk =

b∫
a

φk (x)dx. (3.12)

At this point, it is common to add in a modal damping term 2wSC,kζkuk
′ (t) to the left side

of Equation (3.9) to account for all proportional damping effects. Four possible damping
mechanisms, one external and three internal, and various combinations of these mecha-
nisms have been considered by Banks and Inman [23]. They are viscous air damping, strain
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rate damping or Kelvin-Voigt damping, spatial hysteresis, and time hysteresis, respectively.
Their study shows that air damping plays a more significant role in lower modes whereas
internal damping plays a more important role for higher modes.

Equations (3.9) and (3.6) provide a complete system of equations for the vibration en-
ergy harvester. If the beam is excited with a driving frequency that is close to one of
its natural frequencies, then the corresponding mode of that frequency will dominate
the motion of the beam. In this situation, it is reasonable to make the approximation
ω (x, t) =

∞

∑
i=1

φi (x)ui (t) ≈ φ1 (x)u1 (t). After we drop the ”1” subscript, this simple ap-

proximation reduces Equation 3.9 to

u′′ (t)+2wSCζ u′ (t)+
[
wSC

2]u+Avp =−m [γ]h′′ (t) . (3.13)

Here m is the mass/unit length, γ is the modal influence coefficient of the base excitation,
ζ is the modal damping ratio, wSC is the modal short-circuit natural frequency, and A is the
electromechanical coupling coefficient (effective piezoelectric constant). Equation (3.6) is
simplified to

q(t) = e31w(tp + ts) [φxu]

∣∣∣∣∣ b

a
− 2ε33

tp
w(b−a)vp . (3.14)

Differentiating Equation (3.14) yields

−Au′+
2ε33

tp
w(b−a)vp

′ =−i, (3.15)

where i represents the current. We can focus on the single-mode model (Equations (3.13)
and (3.15)) for now, which assumes that the beam is vibrating near its fundamental natural
frequency and, consequently, the motion of the beam is described by one modal coordinate
(typically, the fundamental mode). We need to solve the system and find the maximum
power points of energy harvesting over a range of base excitation frequencies, patch thick-
ness and length, load resistances, etc. The results will allow a designer to choose the
optimal resonant frequency and patch dimensions to maximize the power harvested.

In the single-mode model, i.e., Equations (3.13) and (3.15), the two unknowns are the
modal displacement u(t) and the terminal voltage vp, and the two inputs are the base motion
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h(t) and the current i. The beam tip deflection, which is a predominant measure, can
be computed by the simple relation ω (L, t) = φ (L)u(t), where φ(x) is the fundamental
mode shape function. The coefficients of Equations (3.13) and (3.15) can be calculated
using knowledge of the materials and the layout of the beam, or they may be estimated
experimentally.

The most commonly analyzed scenario for vibration energy harvesting is steady state base
excitation. At steady state, we suppose that the beam and base motions are of the following
forms, respectively

u(t) =U sin(ωbaset) , (3.16)

h(t) = H sin(ωbaset−φbase) , (3.17)

where U is the amplitude of the modal displacement, H is the amplitude of the base motion,
ωbase is the base motion driving frequency, and φbase is the phase lead of the base motion
relative to the beam motion. If we further consider a simple resistive load where i = vp

R and
R is the load resistance, then Equations (3.13) and (3.15) are simplified to a linear system.
Assuming the voltage signal takes the form vp = Vp sin(ωbaset−θvoltage) and substituting
these expressions into Equation (3.15), we have

−AUωbase cos(ωbaset)+C0Vpωbase cos
(
ωbaset−θvoltage

)
=−

Vp sin
(
ωbaset−θvoltage

)
R

,

(3.18)
where C0≡ 2ε33

tp
w(b−a). With the help of trigonometric identities cos(x− y)= cosxcosy+

sinxsiny and sin(x− y) = sinxcosy− cosxsiny we can rewrite Equation (3.18) as

−AUωbase cos(ωbaset)+C0Vpωbase
[
cos(ωbaset)cosθvoltage + sin(ωbaset)sinθvoltage

]
=−Vp

R

[
sin(ωbaset)cosθvoltage− cos(ωbaset)sinθvoltage

]
.

(3.19)
Matching the coefficients of cos(ωbaset) and sin(ωbaset) respectively, we obtain

−AUωbase +C0Vpωbase cosθvoltage =
Vp

R
sinθvoltage. (3.20)

Solving for cosθvoltage, we obtain

cosθvoltage =−C0ωbaseRsinθvoltage. (3.21)
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Substituting Equation (3.21) into Equation (3.20), we get

−AUωbase +C0Vpωbase
(
−C0ωbaseRsinθvoltage

)
=

Vp

R
sinθvoltage. (3.22)

Solving for sinθvoltage, we obtain

sinθvoltage =−
AUωbaseR

Vp
(
1+C0

2
ωbase

2R2
) . (3.23)

Substituting Equation (3.23) into Equation (3.21) yields

cosθvoltage =
C0AUωbase

2R2

Vp
(
1+C0

2
ωbase

2R2
) . (3.24)

Now substituting Equations (3.23) and (3.24) into Equation (3.13)

−Uωbase
2 sin(ωbaset)+2wSCζUωbase cos(ωbaset)

+
[
wSC

2]U sin(ωbaset)+AVp sin
(
ωbaset−θvoltage

)
= m [γ]Hωbase

2 sin(ωbaset−φbase) ,

(3.25)

which leads to

−Uωbase
2 sin(ωbaset)+2wSCζUωbase cos(ωbaset)+

[
wSC

2]U sin(ωbaset)

+AVp
[
sin(ωbaset)cosθvoltage− cos(ωbaset)sinθvoltage

]
= m [γ]Hωbase

2 [sin(ωbaset)cosφbase− cos(ωbaset)sinφbase] .

(3.26)

Matching the coefficients of cos(ωbaset) and sin(ωbaset), respectively, we get

−Uωbase
2 +
[
wSC

2]U +AVp cosθvoltage = m [γ]Hωbase
2 cosφbase, (3.27)

2wSCζUωbase−AVp sinθvoltage =−m [γ]Hωbase
2 sinφbase. (3.28)

Substituting Equation (3.21) into Equation (3.27), we obtain

−Uωbase
2 +
[
wSC

2]U +AVp
C0AUωbase

2R2

Vp
(
1+C0

2
ωbase

2R2
) = m [γ]Hωbase

2 cosφbase. (3.29)
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Solving for cosφbase, we find

cosφbase =
−ωbase

2 +
[
wSC

2]+ C0A2ωbase
2R2

(1+C0
2
ωbase

2R2)

m [γ]Hωbase
2 U. (3.30)

Substituting Equation (3.23) into Equation (3.28), we obtain

2wSCζUωbase +AVp
AUωbaseR

Vp
(
1+C0

2
ωbase

2R2
) =−m [γ]Hωbase

2 sinφbase. (3.31)

Solving for sinφbase, we find

sinφbase =−
2wSCζ ωbase +

A2ωbaseR
(1+C0

2
ωbase

2R2)

m [γ]Hωbase
2 U. (3.32)

Using Equations (3.30) and (3.32) and the trigonometric identity cos2(φbase)+sin2(φbase)=

1, we find−ωbase
2 +
[
wSC

2]+ C0A2ωbase
2R2

(1+C0
2
ωbase

2R2)

m [γ]Hωbase
2


2

U2 +

−2wSCζ ωbase +
A2ωbaseR

(1+C0
2
ωbase

2R2)

m [γ]Hωbase
2


2

U2 = 1.

(3.33)
Solving for U leads to

U =
m[γ]Hωbase

2(1+C0
2
ωbase

2R2)√
((−ωbase

2+[wSC
2])(1+C0

2
ωbase

2R2)+C0A2ωbase
2R2)

2
+(2wSCζ ωbase(1+C0

2
ωbase

2R2)+A2ωbaseR)
2
.

(3.34)

Using Equations (3.23) and (3.24) and the trigonometric identity cos2(θvoltage)+sin2(θvoltage)=

1, we obtain [
− AUωbaseR

Vp
(
1+C0

2
ωbase

2R2
)]2

+

[
C0AUωbase

2R2

Vp
(
1+C0

2
ωbase

2R2
)]2

= 1. (3.35)

Solving for Vp, we find
Vp = AUωbaseR. (3.36)
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Substituting Equation (3.34) into Equation (3.36), we obtain

Vp =
ARm[γ]Hωbase

3(1+C0
2
ωbase

2R2)√
((−ωbase

2+[wSC
2])(1+C0

2
ωbase

2R2)+C0A2ωbase
2R2)

2
+(2wSCζ ωbase(1+C0

2
ωbase

2R2)+A2ωbaseR)
2
.

(3.37)
The average power dissipated by the load resistor is given by

P =
V 2

p

2R
. (3.38)

Substituting Equation (3.37) into Equation (3.38), we obtain an expression for power:

P =
A2Rm2[γ]2H2ωbase

6(1+C0
2
ωbase

2R2)
2

2
[
((−ωbase

2+[wSC
2])(1+C0

2
ωbase

2R2)+C0A2ωbase
2R2)

2
+(2wSCζ ωbase(1+C0

2
ωbase

2R2)+A2ωbaseR)
2
] .

(3.39)
Equation (3.39) provides an explicit and complicated form for power generation, which
involves nine parameters. We will study the effects of these parameters in the following
chapters.
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CHAPTER 4:
Optimization Methodology

4.1 Optimization Methodology Overview
We optimize piezoelectric power generation by analyzing two power generation models
using two sampling approaches and one iterative approach. The goal of our methodology
is to discover the optimal values of each variable in order to maximize power generation.
In the following chapter we compare the results of each optimization method and analyze
the robustness of our results.

4.2 Power Generation Models
We optimize piezoelectric power generation by optimizing the mathematical models de-
scribed in Chapters 2 and 3. We attempt to find the optimal combination of variable values
in order to maximize power.

The first model is an adaptation of Equation (2.28). It consists of three variables, ω , ωn,
and ζ . We will not consider m or Y 2

0 as they occur only in the numerator of Equation (2.28)
and obviously maximize power by taking on the largest value possible:

P
mY0

2 =
ζ ( ω

ωn
)3ω3

(1− ω2

ω2
n
)2 +(2ζ

ω

ωn
)2

(4.1)

The second model is an adaptation of Equation (3.39). It consists of six variables. We
will not consider m, γ , or H as they occur only in the numerator of Equation (3.39) and
obviously maximize power by taking on the largest value possible:

P
(mγH)2 =

A2Rωbase
6(1+C0

2
ωbase

2R2)2

2[((−ωbase
2+wSC

2)(1+C0
2
ωbase

2R2)+C0A2ωbase
2R2)2+(2wSCζ ωbase(1+C0

2
ωbase

2R2)+A2ωbaseR)2]

(4.2)
Equations (4.1) and (4.2) lie in the core of our analysis.
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4.3 Variable Ranges
In order to optimize maximum power generated we must constrain our variables. The goal
of the optimization is to find the optimum combination of variables in order to maximize
power and lead to the development of more efficient piezoelectric generators. Keeping in
mind the practical application of our optimization, we select the ranges of each variable in
such a way that engineers will be able to select materials and conditions within the limits of
each variable to create a physical model based on our results. Figures 4.1 and 4.2 display
the ranges for variables in Equations (4.1) and (4.2), respectively.

Table 4.1: Variable ranges for the three-variable power generation model of Equation (4.1).

Variable Variable Symbol Range

Frequency of Excitation ω [120πs−1,360πs−1]

Natural Frequency ωn [120πs−1,360πs−1]

Modal Damping Ratio ζ [0.005,0.02]

In Roundy and Wright’s experiment [15], they use the values ω = ωn = 240πs−1 and ζ =

0.015. We choose the range of ω , ωn and ζ by varying Roundy and Wright’s experimental
values.

Table 4.2: Variable ranges for the six-variable power generation model of Equation (4.2).

Variable Variable Symbol Range

Electromechanical Coupling Coefficient A [0.01,0.99]

Load Resistance R [0.02Ω,100Ω]

Base Motion Driving Frequency ωbase [120πs−1,360πs−1]

Net Clamped Cap. of Piezoelectric Material C0 [1×10−8F,1×10−6F ]

Modal Short Circuit Net Frequency wSC [120πs−1,360πs−1]

Modal Damping Ratio ζ [0.005,0.02]

We choose the range of ωbase and ζ by varying the experimental values found in Roundy
and Wright’s paper [15]. Likewise, we choose the range of C0 by varying the value cited
in Fleming and Behren’s paper [24]. We choose to use the same range for wSC as the
other frequency, ωbase. For the coefficient, A, we use [0.01,0.99]. Finally, the range of
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R varies from the resistance of a copper wire to about half the resistance of an operating
incandescent light bulb.

4.4 mk Factorial Sampling
One method to find an optimal solution for power generation using our models is to evaluate
the combination of all independent variables, which we will interchangeably refer to as
factors in this chapter, at different levels. Levels are the variety of values a factor may
assume in a simulation. This methodology can be described as mk factorial design, where
m is the number of levels per factor and k is the number of factors. In an mk factorial
design the number of design points is equal to mk. Design points are the combination of
factor levels to be evaluated in the simulation. The larger the value of m for an mk factorial
design, the better its space-filling properties [25]. However, an increase of levels may
drastically increase the number of design points required to evaluate in a simulation.

4.5 Nearly Orthogonal and Balanced Latin Hypercube
Sampling

An alternate and more efficient sampling methodology is to use space-filling designs to
thoughtfully choose the specific levels of each factor to evaluate. Latin hypercube designs
provide a flexible way of constructing efficient designs for qualitative factors. They have
some of the space-filling properties of mk factorial design, but require orders of magnitude
less sampling [25].

K.Q. Ye [1998] describes Latin hypercubes as follows:

An n× d Latin hypercube consists of d permutations of Sn = {1,2, ...n}.
A Latin hypercube design takes row vectors as the experimental points in
a d-dimensional space. One-dimensional projections of a Latin hypercube
design are evenly spaced and have the lowest possible discrepancy. [26]

The significant benefits of the Latin hypercube sampling used in this paper is the samplings’
orthogonality and space-filling property.
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4.6 Sampling Metric: Orthogonality
The correlation between two vectors ~u = [u1,u2, ...un] and ~v = [v1,v2, ...vn] is defined the
value of the quotient

∑(vi− v̄)(ui− ū)√
∑(ui− ū)2 ∑(vi− v̄)2

, (4.3)

where ū = ∑ui
n and v̄ = ∑vi

n . If ~u and ~v are uncorrelated they are said to be orthogonal
and their correlation value is zero. Alternatively, two completely correlated vectors have
a correlation value of one. Orthogonal Latin hypercubes create column vectors with zero
correlation [26].

Orthogonality in variable sampling is particularly valuable in regression analysis and sim-
ulations where one desires independent variables in a regression model to be orthogonal to
each other in order to minimize variable correlation [27], [28]. Additionally, the orthog-
onal Latin hypercube design ensures independence of estimates of linear effects of each
variable [26].

No matter how many levels or factors, mk factorial samplings result in completely orthog-
onal design points. In other words, the design columns in factorial design are uncorrelated.

We use a select set of columns from a nearly orthogonal and balanced (NOB) design,
developed by H. Vieira Jr. [29], in order to reduce the number of design points necessary to
efficiently find the optimal solution to our power generation problem. After we input our
model variables, with associated variable ranges, Vieira’s NOB design spreadsheet outputs
512 nearly orthogonal and balanced design points [30]. According to Vieira,

Nearly orthogonal means that the maximum absolute pairwise correlation
between and two design columns is minimal. Nearly balanced means that
for any single factor column, the number of occurrences of each distinct
factor level is nearly equal.

Vieira and Sanchez call a design nearly orthogonal if the absolute pairwise correlation
between any two factors is less than 0.05. Likewise, they call a design nearly balanced if
the number of objects in each level of each factor differs from the ideal by no more than
20% [25].
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The balance is a concern when discrete-valued factors with limited numbers of levels are
present because rounding the levels appropriate for continuous-valued factors may induce
correlations that are larger than desired. Because the designs we use in this paper involve
only continuous-valued factors, hence the subset of columns is a Latin hypercube, we will
refer to these as nearly orthogonal and balanced Latin hypercube (NOBLH) designs.

Below are the correlation between factors for the nearly orthogonal and balanced Latin
hypercube sampling, consisting of the 512 design points generated by Vieira’s NOB Design
Spreadsheet. Refer to Appendix, Section A.1 and Section A.2 to see the MATLAB code
we used to generate orthogonality values cited in Tables 4.3 and 4.4.

Table 4.3: Orthogonality of three-variable NOB Latin hypercube design.
ω ωn ζ

ω −0.0011 −0.005

ωn - 0.0011 −0.0038

ζ -0.005 -0.0038

Table 4.4: Orthogonality of six-variable NOB Latin hypercube design.
A R ωbase C0 wSC ζ

A -0.00106 -0.0036 -0.00293 0.001528 0.001367

R -0.00106 -0.0038 -0.00267 -0.00195 -0.00169

ωbase -0.00359 -0.00378 -0.0017 0.002429 0.001984

C0 -0.00293 -0.00267 -0.0017 -0.00253 -0.00179

wSC 0.001528 -0.00195 0.00243 -0.00253 0.006878

ζ 0.001367 -0.00169 0.00198 -0.00179 0.006878

Recall that perfect orthogonality is defined as having a correlation value of zero. Notice the
minimum absolute pairwise correlation between each design column. Using our variable
inputs, Vieira’s NOBLH design produces close to orthogonal design columns for both our
three- and six-variable models.
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4.7 Sampling Metric: Space-Filling Property

It is desirable to select sample design points with good space-filling properties, in other
words, design points distributed throughout the entire experimental region. For this paper
we rate the space-filling of the samplings using the Euclidean Maximin (Mm) distance.

For a given design, define a distance list d = (d1,d2, ...,d[n(n−1)]/2), where
the elements of d are the Euclidean inter-site distance of the n design points,
ordered from smallest to largest. The Euclidean Mm distance is defined as
d1, where a larger value is better. A large value of d1 means that no two
points are close to (within d1 of) each other. [27]

We use the Equation (4.4) to compute the Euclidean Mm distance:

d(s, t) =

√√√√ k

∑
j=1
|s j− t j|2 (4.4)

where the design space is an n× k matrix and s and t are any two design points [31].

When comparing the Euclidean Mm distance of two samples with equal number of design
points, it is possible to depend solely on Equation (4.4). However, mk factorial and NOBLH
designs result in differing numbers of design points. NOBLH designs result in 512 design
points, while the number of mk factorial design points is a function of levels (m) and factors
(k). For this Euclidean Mm distance calculation we use a three-variable factorial design
with 10 levels and a six-variable factorial design with five levels, resulting in 1000 and
15,625 design points, respectively.

In order to compare Euclidean Mm distance of NOBLH and mk factorial designs, we first
normalize the design columns of each design with values from the mk factorial design.
After column normalization, it is possible to use Equation (4.4) to compute the Euclidean
Mm distance and compare the results. Refer to Appendix, Section A.3 for our Euclidean
Maximin Distance Code.

The three-variable and six-variable NOBLH designs result in Euclidean Mm distances of
0.018 and 0.1947, respectively. The three- and six-variable mk factorial designs result
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in Euclidean Mm distances of 0.1111 and 0.25, respectively. In both the three- and six-
variable models, the mk factorial designs provide space-filling properties optimal to the
NOBLH designs.

Of course, another way of judging the space-filling property of a design is by observing
the location of the design points in reference to the factor ranges. Unfortunately, this vi-
sual technique is only possible in three dimensions or below. See Figure 4.1 for a visual
depiction of the 1000 design points evaluated using 10 levels (m) for the three-factor (k)
model.

Figure 4.1: mk factorial sampling.
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Figure 4.2 visually depicts the 512 nearly orthogonal and balanced Latin hypercube design
points evaluated for the three-variable model.

Figure 4.2: Nearly orthogonal and balanced Latin hypercube sampling.

As the reader will notice, the NOBLH sampling method samples extremely well from the
interior of the design space and does a poor job sampling from the exterior of the design
space. The mk factorial sampling method, on the other hand, samples uniformly across the
design space.
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4.8 Sampling Metric: Efficiency
After evaluating all design points in our model, we determine the maximum power gener-
ated and determine an optimal combination of factor levels. This mk factorial method to
evaluate the six-variable model is easily accomplished using the MATLAB code referenced
in Appendix, Section A.6.

The six-variable power generation model requires 49 floating point operations (flops) in
order to compute one design point. The MATLAB code in Appendix, Section A.6 evaluates
the power generated for all combinations of the six factors at a varying number of levels.
This equates to m6 design points. Therefore the efficiency of the algorithm with the given
number of factors and levels is 49×m6 flops. This model only consists of six factors and
therefore the number of design points required does not change as dramatically with an
increase of levels as a model with more factors. For this paper, we use as many as 15 levels
per factor. When evaluating the model with 15 levels per factor, 156 = 11,390,625 design
points, and 49×11,390,625≈ 558 million flops, our Core i7 equipped computer can carry
out the algorithm in just over two minutes.

If our model consisted of ten factors, an mk factorial sampling of 15 levels would consist
of 1510 ≈ 5.77× 1011 design points and too many flops for a standard desk top computer
to execute in a week. This algorithm and mk factorial design are not a wise use of time for
simulations with a large number of factors, especially if we desire to change the any aspect
of the factors or levels and reproduce the simulation.

The real benefit of nearly orthogonal and balanced Latin hypercube design is its efficiency.
Using Vieira’s NOB design it is possible to evaluate a model of up to 20 k-level discrete
factors (where k = 2,3...11 levels) and 100 continuous factors using only 512 design points
[30]. Many models or simulations contain many more factors and computations. NOB
designs choose very good samplings to test given the limited number of simulations a
system can compute in a given time.

4.9 NOBLH Iterative Method
An additional optimization method involves multiple iterations of sampling the design
space and using results to restrict the design space to choose design points. In this pa-
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per we refer to this method as the NOBLH Iterative method.

First, we use NOBLH design to choose design points from the original design space set by
our variable ranges. Next, we analyze the design point that generate the maximum power
output. By studying the values of each variable in the optimal design point, we are able
to make educated guesses about how to restrict the variable ranges in order to focus our
design space.

With each newly discovered optimal design point we are able to restrict the variable ranges
and design space until we reach a maximum power or identify an issue that causes a cease
to iterations. The aspiration of this method is to arrive at similar results to that of the more
costly mk factorial sampling method while evaluating fewer design points.

It should be noted, the iterative method we use is not as systematic as other iterative meth-
ods. Through the use of our NOBLH iterative method we wish to gain insights into our
optimization models and better understand alternative methods to optimization.
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CHAPTER 5:
Optimization Results and Analysis

5.1 Three-Variable Model NOBLH and mk Factorial
Results

After sampling our design space using both NOBLH and mk factorial sampling methods we
use the resulting design points to find the optimal values of the three variables (ω , ωn, and
ζ ) in order to maximize power generation. For the mk factorial samplings we use levels
of 10 and 100. See the Appendix for the Three-Variable Model Optimization Codes for
factorial sampling (Section A.4) and NOBLH sampling (Section A.5). The results of each
sampling method are summarized in Table 5.1.

Table 5.1: Optimization of power in the three-variable model.
Sampling Method Design Points Optimal Power ω ωn ζ

NOBLH 512 2.49×1010 339.8π 339.8π 0.0122

mk (m = 10) 1,000 7.23×1010 360π 360π 0.005

mk (m = 100) 1,000,000 7.23×1010 360π 360π 0.005

The reader will notice both mk factorial sampling methods are able to find an optimal
power close to three times larger than the NOBLH sampling method. The reader will also
notice both mk factorial samplings determine the optimal values of each factor to be at the
extreme of the factors’ ranges. The optimal values of ω and ωn are the maximum values
allowed by the range, 360π , and the optimal value of ζ is the minimum value allowed by
the range, 0.005. As noted in Chapter 4, the NOBLH sampling fails to adequately sample
the extremes of the design space, while the mk factorial method samples the entire design
space uniformly.

This failure of sampling design points in the extremities of the design space accounts for
only part of the discrepancy of optimal solutions discovered by the sampling techniques.
Notice ω = ωn for both optimal values for the mk factorial samplings and the NOBLH
sampling. After further investigation into the model, we find the optimal values for the ω
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and ωn are always equal.

We can prove this mathematically by analyzing Equation (4.1). In order to maximize the
model we obviously want to make the numerator as large as possible while making the
denominator as small as possible. In order to eliminate the first part of the denominator,
(1− ω2

ω2
n
)2, we set ω = ωn. This reduces the model to the following equation:

P
mY 2

0
=

ζ ω3

4ζ 2 =
ω3

4ζ
. (5.1)

The three-variable model reduces to a two-variable model in which ω = ωn. In order to
maximize power, one simply maximizes ω and minimizes ζ .

After analyzing the design points, we discover that, out of the 512 design points in the
NOBLH sampling, only four design points set ω = ωn, compared to 100 and 1000 points
for the m = 10 and m = 100 mk factorial samplings, respectively.
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Setting ω = ωn plays a crucial role in optimizing this model. The m = 10 mk factorial
design selects 100 design points with ω = ωn. Out of the said 100 design points, 16 de-
sign points produce power greater than the maximum power generated by any of the 512
NOBLH design points. See Figure 5.1 for the sixteen mk factorial design points that out-
perform the NOBLH sampling.

Figure 5.1: mk factorial design points achieving higher power generation than all NOBLH design
points.

While optimizing this particular model, mk factorial sampling proves the best sampling
method. After analysis, we determine that to maximize power one can set ω = ωn and
minimize ζ .
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5.2 Three-Variable Model NOBLH Iterative Results
After determining the optimal power generation and associated variable values for the
three-variable model through the mk factorial results, we attempt to replicate the results
using the NOBLH iterative method. Our initial hopes are the NOBLH iterative method
would be able to reach similar results while evaluating less design points than the more
costly mk factorial sampling method. In this particular case, the three level mk factorial
sampling finds the optimal power using only 1000 design points. Even if the NOBLH iter-
ative method finds the optimal results in two iterations, the method would use
512×2 = 1,024 design points to do so.

The first iteration of the NOBLH iterative method is identical to the NOBLH sampling
method. Table 5.2 uses the same variable ranges as in Table 4.1 and Table 5.3 arrives at the
same results as in Table 5.1.

Table 5.2: Iteration one NOBLH iterative variable ranges.
ω ωn ζ

Lower Limit 120π 120π 0.005

Upper Limit 360π 360π 0.02

Table 5.3: Iteration one NOBLH iterative results.
Optimal Power ω ωn ζ

2.49×1010 339.8π 339.8π 0.01222

After analyzing the results listed in Table 5.3, we are able to restrain the ranges of ω , ωn

and ζ , listed in Table 5.4. Using the new variable ranges we produce 512 new design
points using NOBLH sampling. After evaluating the new design points, we determine the
resulting optimal power generation and associated variable values, as shown in Table 5.5.

Table 5.4: Iteration two NOBLH iterative variable ranges.
ω ωn ζ

Lower Limit 318.3π 318.3π 0.005

Upper Limit 360π 360π 0.015
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Table 5.5: Iteration two NOBLH iterative results.
Optimal Power ω ωn ζ

5.38×1010 349.2π 349.9π 0.0055

Analyzing the results in Table 5.5, we see optimal power increase again along with both
values of ω and ωn. The optimal value of ζ continues to decrease. We use this data to
further tighten all variable ranges for the third iteration, listed in Table 5.6.

Table 5.6: Iteration three NOBLH iterative variable ranges.
ω ωn ζ

Lower Limit 340.6π 340.6π 0.005

Upper Limit 360π 360π 0.006

Table 5.7: Iteration three NOBLH iterative results.
Optimal Power ω ωn ζ

6.73×1010 357.1π 357.4π 0.005135

Table 5.7 displays an additional increase in optimal power, ω , and ωn. Additionally, the
optimal value of ζ continues to decrease. We are able to restrain the ranges for all variables
for the fourth iteration, as listed in Table 5.8.

Table 5.8: Iteration four NOBLH iterative variable ranges.
ω ωn ζ

Lower Limit 353.3π 353.3π 0.005

Upper Limit 360π 360π 0.0052

Table 5.9: Iteration four NOBLH iterative results.
Optimal Power ω ωn ζ

7.12×1010 359.4π 359.5π 0.005029

Table 5.9 displays optimal power close to the results found using mk factorial sampling.
After analysis, we further restrain variable ranges for the fifth iteration, listed in Table
5.10.
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Table 5.10: Iteration five NOBLH iterative variable ranges.
ω ωn ζ

Lower Limit 359π 359π 0.005

Upper Limit 360π 360π 0.0052

Table 5.11: Iteration five NOBLH iterative results.
Optimal Power ω ωn ζ

7.23×1010 360π 360π 0.005002

After five iterations we find optimal power and associated variable values (listed in Table
5.11) equivalent to mk factorial results. Our conservative methodology to iterative range
restriction forces us to reach our results after analyzing 5×512 = 2,560 design points. The
three level mk factorial sampling optimization method determines the same results after
computing only 1000 design points. However, the NOBLH iterative method shows great
potential when dealing with a large number of factors.

5.3 Six-Variable Model NOBLH and mk Factorial
Results

After sampling our design space using both NOBLH and mk factorial sampling methods,
we use the resulting design points to find the optimal values of the six variables (A, R,
ωbase, C0, wSC and ζ ) in order to maximize power generation. For mk factorial samplings
we use levels of 3, 5, 7, 10, 11, and 12. See the Appendix for the Six-Variable Model
Optimization Codes for factorial sampling (Section A.6) and NOBLH sampling (Section
A.7). The results of each sampling method are given in Table 5.12.
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Table 5.12: Optimization of power in the six-variable model.
Method Design Points Optimal Power A R ωbase C0 wSC ζ

NOBLH 512 7.8509×109 0.754 13.129 342.61π 4.1×10−8 344.96π 0.006

mk (m = 3) 729 1.8082×1010 0.5 50.01 360π 1×10−6 360π 0.005

mk (m = 5) 15,625 1.8082×1010 0.5 50.01 360π 1×10−6 360π 0.005

mk (m = 7) 117,649 1.8256×1010 0.337 100 360π 1×10−6 360π 0.005

mk (m = 10) 1,000,000 1.8256×1010 0.337 100 360π 1×10−6 360π 0.005

mk (m = 11) 1,771,561 1.8168×1010 0.402 70.01 360π 1×10−6 360π 0.005

mk (m = 12) 2,985,984 1.8203×1010 0.356 90.91 360π 1×10−6 360π 0.005

Like the three-variable model, all mk factorial samplings discover combinations of factor
values capable of generating power more than twice the value of the NOBLH sampling’s
optimal solution. Also like the three-variable model, the optimal solution in the mk factorial
samplings includes four variables at the extremes of their ranges. The optimal values of
ωbase, C0, and wSC are the maximums of the their ranges, while the optimal value for ζ is
the minimum of its range. As we noted in the previous section, NOBLH sampling fails to
sample the extremes of the design space. The simulations using the NOBLH design points
does not have the opportunity to explore power generation at the extremes of the design
space. With only 217 more design points than the NOBLH sampling, the three level mk

factorial sampling creates design points in the extremes of the variable ranges and finds an
optimal solution more than twice the value of the NOBLH design solution.

An interesting result of our simulation is that creating a finer grid (increasing the number
of levels and resulting design points) does not always result in a more optimal solution.
For example, both the m = 7 and m = 10 mk factorial samplings find an optimal solution
of 1.8256× 1010. However, when the number of levels increases from ten to eleven the
optimal solution decreases to 1.82168×1010. Additionally, the reader will notice the max-
imum power found with m = 12 sampling is also less than that discovered with m = 10
sampling. This can be explained by the fact both the m = 7 and m = 10 samplings include
A = 0.337, while the m = 11 and m = 12 samplings do not.

The true optimal value depends on the precise sampling of A and R. Using the assumption
the optimal power generation value occurs at the maximum allowable values of ωbase, C0,
and wSC and minimum allowable value of ζ , we are able to further refine the true optimal
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values of A and R. We accomplish this refinement by fixing ωbase, C0, wSC, and ζ at their
optimal value while sampling 1000 levels each of A and R. This results in refining the
optimal values of A as 0.3376 and R as 100. With this more precise value for A we arrive at
a new optimal power generation only 6.73×104 greater than our previous optimal solution.

5.4 Six-Variable Model NOBLH Iterative Results
After determining the optimal power generation and associated variable values for the six-
variable model through the mk factorial results, we attempt to replicate the results using the
NOBLH iterative method. Our aspiration is the NOBLH iterative method will be able to
reach similar results while evaluating less design points than the more costly mk factorial
sampling method. From Table 5.12, we see using seven levels the mk factorial sampling
method results with an optimal power of 1.8256× 1010 after evaluating 117,649 design
points. We deem the NOBLH iterative method a success if we reach a optimal power
close to the seven level mk factorial sampling method results with far fewer design points
evaluated.

The first iteration of the NOBLH iterative method is identical to the NOBLH sampling
method. Table 5.13 uses the same variable ranges as in Table 4.2, and Table 5.14 arrives at
the same results as in Table 5.12.

Table 5.13: Iteration one NOBLH iterative variable ranges.
A R ωbase C0 wSC ζ

Lower Limit 0.01 0.02 120π 1×10−8 120π 0.005

Upper Limit 0.99 100 360π 1×10−6 360π 0.02

Table 5.14: Iteration one NOBLH iterative results.
Optimal Power A R ωbase C0 wSC ζ

7.85×109 0.754 13.129 342.6π 4.1×10−8 345π 0.005998

After analyzing the results listed in Table 5.14, we are able to assume optimal power in-
creases when A, R, ωbase and wSC take on values closer to their upper most range value.
We also assume ζ and C0 taking values closer to their minimum allowable values results in
an increase in power. From these assumptions we tighten the ranges of all three variables,
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listed in Table 5.15. Using the new variable ranges we produce 512 new design points using
NOBLH design. After evaluating the new design points we determine the resulting optimal
power generation and associated variable values, given in Table 5.16.

Table 5.15: Iteration two NOBLH iterative variable ranges.
A R ωbase C0 wSC ζ

Lower Limit 0.25 1 340π 1×10−8 340π 0.005

Upper Limit 0.99 100 360π 1×10−7 360π 0.01

Table 5.16: Iteration two NOBLH iterative results.
Optimal Power A R ωbase C0 wSC ζ

1.64×1010 0.812 13.98 358.5π 1.28×10−8 358.7π 0.00533

After the second iteration we notice an increase in optimal power, ωbase, and wSC. The
optimal A and R increase slightly. The optimal ζ and C0 reduce slightly. Using these
findings we further restrain variable ranges, listed in Table 5.17. Our results are shown in
Table 5.18.

Table 5.17: Iteration three NOBLH iterative variable ranges.
A R ωbase C0 wSC ζ

Lower Limit 0.5 5 358π 1×10−8 358π 0.005

Upper Limit 0.99 50 360π 5×10−8 360π 0.006

Table 5.18: Iteration three NOBLH iterative results.
Optimal Power A R ωbase C0 wSC ζ

1.778×1010 0.626 28.24 358.4π 4.1×10−8 358.2π 0.005006

From the third iteration we notice an increased optimal power along with a slight decrease
in the optimal values of ωbase, wSC, and ζ . The optimal values of A, R, and C0 increase
slightly. We continue restricting variable ranges, listed in Table 5.19.
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Table 5.19: Iteration four NOBLH iterative variable ranges.
A R ωbase C0 wSC ζ

Lower Limit 0.5 20 358π 2×10−8 358π 0.005

Upper Limit 0.8 30 359π 5×10−8 359π 0.00501

Table 5.20: Iteration four NOBLH iterative results.
Optimal Power A R ωbase C0 wSC ζ

1.792×1010 0.728 21.31 358.9π 2.9×10−8 358.9π 0.005

From the results of the fourth iteration, Table 5.20, we see another increase in optimal
power. However, knowing the optimal values discovered from mk factorial sampling, we
have made incorrect assumptions restricting the ranges of A, R, ωbase, C0, and wSC. If
we further restrict the variable ranges in subsequent iterations we would fail to reach an
optimal power similar to that found through mk factorial sampling.

An alternative way to look at the NOBLH iterative results is purely in terms of the number
of design points evaluated. After four iterations, we only evaluate 4× 512 = 2048 design
points. The optimal power resulting from the NOBLH iterative method (1.792× 1010)
only represents a 1.84% loss in power from the seven level mk factorial sampling method
(1.8256× 1010). Less than a two percent loss in optimal power seems minor when you
consider the seven level mk factorial sampling method requires the evaluation of 117,649
design points. Again, the NOBLH iterative method shows potential when optimizing mod-
els with a large number of variables.

5.5 Robustness Analysis
The sampling methods provides the means to find the optimal combination of variable
values to maximize power generation in our models. After running simulations with the
sampled design points we find the optimal solution for each model. On paper, we then
possess the exact metrics to build a piezoelectric generator prototype in order to provide
optimal power output. However, the precision of the variable values we insist on paper
are not always possible to replicate in experiments or practical application, even under
perfect conditions. All variables depending on materials or conditions have associated
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variability. For example, a resistor may be advertised as providing a certain number of
ohms of resistance, but in reality, provides the advertised ohms of resistance plus or minus
some level of discrepancy allowed by the manufacturer.

The purpose of robust design, as a process of simulation optimization, is to identify the
“best” solution as one not overly sensitive to small changes in system inputs. In this section
we will attempt to identify which factors in the design of a piezoelectric generator need
more precision and which factors will allow more variability while producing as much
power as possible [32].

5.5.1 Three-Variable Model
Using mathematical models to simulate a real world problem, it is easy to see the variables
only as their numerical values. In reality the variables respond to specifications of the
piezoelectric generator and its environmental setting.

In this simple three-variable model, engineers will be able to control all of the variables
in experimentation. They will be able to set the frequency of excitation (ω) by adjusting
the environmental conditions affecting the piezoelectric generator. Additionally, they will
be able to set the natural frequency (ωn) and modal damping ratio (ζ ) of the generator by
adjusting the design of the prototype.

In the practical application of a piezoelectric generator, certain conditions may not be as
easy to control. A piezoelectric generator designed to operate using the vibrations of an
air conditioning vent will not be able to depend on a precise or consistent frequency of
excitation. Engineers must design the generator to operate within a range of frequency
while producing the necessary power.

Earlier in this chapter, we determined that the optimal solution to the three-variable model
occurred when ω = ωn. Given the fact the environment determines the frequency of exci-
tation, we fixed ω during the robustness analysis while varying ωn and ζ .

Single Variable Manipulation
We have determined the optimal solution of the three-variable model depends on minimiz-
ing ζ while maximizing ω and setting ω = ωn. Due to this knowledge we evaluate the
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robustness of the optimal solution to the three-variable model in terms of varying ζ and
varying the difference between ω and ωn.

First, we set ω = ωn = 360π and vary ζ in order to evaluate the power lost while deviating
from the optimal value of ζ . See the results listed in Table 5.21.

Table 5.21: Single variable manipulation of ζ .
ζ % change in ζ Power % Loss

0.005 baseline 7.23×1010 baseline

0.00505 1% 7.162×1010 0.99%

0.00525 5% 6.889×1010 4.76%

0.0055 10% 6.576×1010 9.09%

0.006 20% 6.028×1010 16.67%

0.01 100% 3.617×1010 50%

0.02 300% 1.808×1010 74.75%

A 1%, 5%, or 10% change in ζ results in power losses of less than 10%. A change as
drastic as doubling the desired value of ζ results in only a 50% loss in power.

Next, we set ζ = 0.005, ω = 360π and vary ωn to evaluate the resulting power lost. See
the results in Table 5.22.
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Table 5.22: Single variable manipulation of ωn.
ωn % change in ωn Power % Loss

360π baseline 7.23×1010 baseline

360.36π 0.1% 6.948×1010 3.94%

359.64π -0.1% 6.962×1010 3.75%

360.9π 0.25% 5.775×1010 20.16%

359.1π -0.25% 5.798×1010 19.84%

361.8π 0.5% 3.608×1010 50.12%

358.2π -0.5% 3.626×1010 49.87%

363.6π 1% 1.444×1010 80.04%

356.4π -1% 1.449×1010 79.96%

378π 5% 7.154×108 99.01%

342π -5% 7.160×108 99.01%

The reader will notice the drastic power loss when the separation between ω and ωn in-
creases. We find that even a 1% discrepancy between ω and ωn results in a power loss
greater than a 300% change in ζ from its optimal value. Whether the ωn is greater than or
less than ω does not make a difference.

Another way to visualize the sensitivity of ωn and ζ is to plot the resulting power in terms
of optimal power as each variable deviates from its optimal value. See Figure 5.2 below.
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Figure 5.2: Single variable manipulation and resulting percent optimal power.

As seen in Figure 5.2, the reduction of power when ζ increases from its optimal value is
linear, with a relatively small slope. On the other hand, when ωn increases, resulting in
an increase in the distance between ω and ωn, power drastically reduces within the first
percentages of change in ωn.

Alternatively, as ζ decreases from its optimal value, power increases linearly with the same
small slope. The reader should note, reducing ζ from its optimal value sets ζ ’s value out-
side the values originally studied in this paper. As ωn decreases from its optimal value,
resulting in an increase in the distance between ω and ωn, power drastically reduces sym-
metrically to the power reduction resulting from an increase in ωn from its optimal value.

Upon completion of the single variable manipulation robustness analysis of the three-
variable model, we determine the importance of minimizing the discrepancy between ω

and ωn. ζ should be set as low as possible, but the precision of setting ζ should be a
second priority to precisely matching ω to ωn.
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Multiple Variable Manipulation
Single variable manipulation provides insight into how the departure from the optimal value
of each variable affects power output when the other variables are fixed at their optimal val-
ues. While single variable manipulation provides valuable analysis, it is seldom realistic to
assume fixing variable values in practical application. A more realistic analysis comprises
of treating each variable value as a function of a distribution. The distribution has an upper
and lower limit to match the possible limits guaranteed by a manufacture, for example, a
capacitor providing 10±1 ohms of resistance. We then analyze how the variable distri-
butions affect the mean and median of power output. From this information we have the
ability to make informed recommendations in allowing more or less variability in variable
distributions.

We assume that engineers would design the piezoelectric generator in order to optimize
power output with a specific frequency of excitation in mind. The generator itself cannot
manipulate the environment and accompanying frequency of excitation. To simulate this
assumption we set the frequency of excitation, ω , to the optimal value of 360π . We are
more interested in finding how the variation in design specifications of the piezoelectric
generator affects power output.

59



In order to guarantee that variable values stayed within desired limits, we use triangle
distributions. First, using SAS’s commercial statistical discovery software, JMP, we create
triangle distributions for both ωn and ζ with modes equal to their respective optimal values
(ωn=360π , ζ =0.005) and the limits at ±10% the optimal values. Using JMP, we create
10,000 sample points from the distributions and fixed value of ω and computed 10,000
power outputs using the three-variable model. The distributions of ωn, ζ and the resulting
power output are illustrated in Figure 5.3.

Figure 5.3: ωn±10%, ζ ±10%, and resulting power distributions.

Letting ωn and ζ vary 10% from their optimal values results in a mean power output of
9.976×109. This mean power represents an 86% loss from the optimal value. Furthermore,
the median power output is only 2.09×109, a 97% loss from the optimal power value. This
means 50% of all the design points produce a loss of 97% or more.
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Next, we use insights derived from the analysis of the single variable manipulation to drive
our quest for more power output. We see from single variable manipulation the importance
of setting ω = ωn in order to maximize power. In the following distribution we allow ωn

to vary only 5% from its optimal value, while allowing ζ to vary 10%. See Figure 5.4 for
the ωn, ζ , and resulting power distributions.

Figure 5.4: ωn±5%, ζ ±10%, and resulting power distributions.

Tightening the distribution to allow for only a 5% variation of ωn while keeping the previ-
ously used ζ distribution results in a mean power output of 1.782×1010, a 75% loss from
the optimal power value. The resulting median power output for these distributions equals
7.51×109, a 90% power loss. Even if the results are not overwhelming, this restriction of
variation for ωn leads to an improvement in power.
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Due to the results we see from slightly tightening the ωn distribution, we decide to inves-
tigate further by allowing ωn to vary only 1% from its optimal value while allowing ζ to
continue to vary 10% from optimal. See Figure 5.5 for the ωn, ζ , and resulting power
distributions.

Figure 5.5: ωn±1%, ζ ±10%, and resulting power distributions.

Further tightening the distribution to allow for only a 1% variation of ωn while keeping
the previously used ζ distribution results in a mean power output of 5.131× 1010, a 29%
loss from the optimal power value. The resulting median power output for these distribu-
tions equals 5.4×1010, a 25% power loss. This is a drastic improvement in power output.
Notice the power distribution’s shape changes as well, resulting in an increased likelihood
of generating power close to the optimal and shifting the median power output above the
mean.
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Next, we try to further improve upon our findings by restricting the variation of ζ from
its optimal value. We tighten the distribution of ζ to only 5% of its optimal value while
keeping ωn’s distribution to allow an deviation of 1% of its optimal value. See Figure 5.6
for the ωn, ζ , and resulting power distributions.

Figure 5.6: ωn±1%, ζ ±5%, and resulting power distributions.

Tightening the distribution to allow for only a 5% variation of ζ while keeping the pre-
viously used ωn distribution results in a mean power output of 5.128× 1010, a 29% loss
from the optimal power value. The resulting median power output for these distributions
equals the median of the previous distributions at 5.4× 1010, a 25% power loss. We find
tightening ζ ’s distribution actually leads to a decrease in mean power output. This is due to
the fact when ω = ωn as ζ approaches zero power increases infinitely. That is, there exists
a vertical asymptote when ζ = 0. With a tighter distribution, the value of ζ does not have
the ability to take on smaller values.

Using multiple variable manipulation robust analysis we find when attempting to optimize
power it is best to allow as little variation as possible from natural frequency’s (ωn) optimal
value. This will minimize the discrepancy between ω and ωn and result in greater power
output. The restriction of the variation of the modal damping ration (ζ ) from its optimal
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value is not as important. In fact, we find if the variation of ζ would allow a smaller value
than the desired setting, the model generates even greater power.

5.5.2 Six-Variable Model
In the six-variable model, engineers are able to control all of the variables in experimen-
tation. They are able to set the base motion driving frequency (ωbase) by adjusting the
environmental conditions affecting the piezoelectric generator. Additionally, they are able
to set the electromechanical coupling coefficient (A), load resistance (R), net clamped ca-
pacity of piezoelectric material (C0), modal short circuit net frequency (wSC) and modal
damping ratio (ζ ) by adjusting the design of the prototype.

In the practical application of a piezoelectric generator certain conditions may not be as
easy to control. A piezoelectric generator designed to operate using the vibrations of an air
conditioning vent will not be able to depend on a precise or consistent base motion driving
frequency. Given the fact the environment determines the base motion driving frequency,
we fix ωbase during the robustness analysis while varying the other five factors.

Single Variable Manipulation

Earlier in this chapter, we determined the optimal solutions of the six-variable model in
order to optimize power. To remind the reader of these values we include Table 5.23.

Table 5.23: Optimal values for each variable in the six-variable model.
Max Power A R ωbase C0 wSC ζ

1.8256×1010 0.3376 100 360π 1×10−6 360π 0.005

First, we fix all variables at their optimal values and vary the electromechanical coupling
coefficient (A). See the results in Table 5.24.

64



Table 5.24: Single variable manipulation of A.
A % change in A Power % Loss

0.3376 baseline 1.8256×1010 baseline

0.30384 -10% 1.8057×1010 1.09%

0.32072 -5% 1.8209×1010 0.26%

0.3342 -1% 1.8254×1010 0.01%

0.3410 1% 1.8254×1010 0.01%

0.3545 5% 1.8211×1010 0.25%

0.3714 10% 1.8088×1010 0.92%

From the data presented, it appears varying A does not drastically decrease power output.
Varying A by 10% from its optimal value only results in around a 1% loss in power.

Next, we fix all variables at their optimal values and vary load resistance (R). See the results
in Table 5.25.

Table 5.25: Single variable manipulation of R.
R % change in R Power % Loss

100 baseline 1.8256×1010 baseline

90 -10% 1.8175×1010 0.44%

95 -5% 1.8228×1010 0.15%

99 -1% 1.8252×1010 0.02%

101 1% 1.8259×1010 -0.02%

105 5% 1.8262×1010 -0.04%

110 10% 1.8251×1010 0.03%

By analyzing the data above we see that varying R changes power by even less than the
variation of A. The reader will notice negative loss when R takes on the value of 101 and
105 ohms. This represents a gain of power at those values of R. The reader will also notice
increasing R past those values to 110 ohms results in a power loss from the baseline. It is
interesting to note, that had we initially included 105 ohms in the range of load resistance
to be studied we would find a different optimal value of R.
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Next, we fix all variables at their optimal values and vary the net clamped capacity of
piezoelectric material (C0). See the results in Table 5.26.

Table 5.26: Single variable manipulation of C0.
C0 % change in C0 Power % Loss

1×10−6 baseline 1.8256×1010 baseline

9×10−7 -10% 1.8223×1010 0.18%

9.5×10−7 -5% 1.8239×1010 0.09%

9.9×10−7 -1% 1.8253×1010 0.02%

1.01×10−6 1% 1.8259×1010 -0.02%

1.05×10−6 5% 1.8274×1010 -0.1%

1.1×10−6 10% 1.8292×1010 -0.2%

The variation of C0 from its optimal value results in small variation of power output. Also,
as C0 increases so does the power. From the results above, we assume if we had included
a larger value as the maximum limit of C0 to study we would derive a larger value of C0 as
its optimal value.

Next we fix all variables at their optimal values and vary the modal short circuit net fre-
quency (wSC). See the results in Table 5.27.

Table 5.27: Single variable manipulation of wSC.
wSC % change in wSC Power % Loss

360π baseline 1.8256×1010 baseline

324π -10% 2.0229×108 98.89%

342π -5% 7.5408×108 95.87%

356.4π -1% 9.7642×109 46.51%

363.6π 1% 8.5501×109 53.17%

378π 5% 6.5336×108 96.42%

396π 10% 1.6194×108 99.11%

Variation in wSC results in large power loss. As small as a 1% deviation in modal short
circuit frequency results in close to a 50% loss in power. A 10% deviation of wSC results in
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a 99% power loss. The six-variable model is extremely sensitive to variations of wSC from
its optimal value.

As in the three-variable model, the difference between two frequencies in the six-variable
model greatly impact power generation. In this robustness study we fix ωbase at its optimal
value and vary wSC. Due to the fixed ωbase, the relationship between the two frequencies
and power generation is not obvious to the reader. However, after analyzing Equation
(4.1), the reader will notice when ωbase = wSC the denominator decreases by eliminating
(−ωbase

2 +wSC
2)(1+C0

2
ωbase

2R2). The decrease in the denominator of Equation (4.1)
leads to greater power generation.

Finally, we fix all variables at their optimal values and vary the modal damping ratio (ζ ).
See the results in Table 5.28.

Table 5.28: Single variable manipulation of ζ .
ζ % change in ζ Power % Loss

0.005 baseline 1.8256×1010 baseline

0.0045 -10% 2.0227×1010 -10.79%

0.00475 -5% 1.9203×1010 -5.19%

0.00495 -1% 1.8440×1010 -1.01%

0.00505 1% 1.8075×1010 0.99%

0.00525 5% 1.7377×1010 4.82%

0.0055 10% 1.6560×1010 9.29%

The variation of ζ from its optimal value results in small variation of power output. Also,
as ζ decreases the power increases. From the results above we could assume that if we
had included a smaller value as the minimum limit of ζ to study we would derive a smaller
value of ζ as its optimal value, as in Figure 5.7.
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Another way to visualize the sensitivity of each variable is to plot the resulting power in
terms of optimal power as each variable deviates from its optimal value.

Figure 5.7: Single variable manipulation and resulting percent optimal power.

Figure 5.7 further illustrates the need to set wSC to its precise optimal value. The effects of
all other variables are drowned out by wSC’s dominating negative effect. Individually A, R,
and C0 change power output insignificantly even under±10% deviations from their optimal
values. ζ demonstrates its ability to linearly effect power both negatively and positively.
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In order to see the effects of the less sensitive variables, see the zoomed in plot in Figure
5.8.

Figure 5.8: Zoomed-in single variable manipulation and resulting percent optimal power.

From Figure 5.8 one will notice, after wSC, the deviations of ζ have the largest impact on
power output. Also notice a change of -10% in ζ increases power slightly more than a
change of 10% in ζ decreases power.

The zoomed-in plot also illustrates the curvature of A’s power curve. The optimal value of
A would not have changed even if we selected a wider range of A values to study.

Upon completion of the single variable manipulation of the six-variable model robustness
analysis, we find modal short circuit net frequency (wSC) proves by far the most sensitive
variable. A deviation of ±10% wSC from its optimal value results in around a 99% power
loss. On the opposite end of the spectrum a deviation of ±10% A, R, or C0 from their
optimal values results in a power loss of around 1% or less. Interesting to note, slightly
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increasing R or C0 or decreasing ζ results in a power gain.

Multiple Variable Manipulation
As previously discussed in the three-variable model robustness analysis, the single variable
manipulation of the six-variable model provides insight into how the departure from the
optimal value of each variable affects power output when the other variables are fixed at
their optimal values. Like the three-variable multiple variable robustness analysis we use
variable distributions to attempt to identify which variables require more precision and thus
less variation from their optimal value in order to maximize power.

We assume that engineers design the piezoelectric generator in order to optimize power out-
put with a specific frequency of excitation in mind. The generator itself cannot manipulate
the environment and accompanying frequency of excitation. To simulate this assumption
we set the base motion driving frequency, ωbase, to the optimal value of 360π . We are
more interested in finding how the variation in design specifications of the piezoelectric
generator affect power output.

70



In order to guarantee that variable values stay within desired limits we use triangle distribu-
tions. First, using SAS’s commercial statistical discovery software, JMP, we create triangle
distributions for the five variables in the six-variable model with modes equal to their re-
spective optimal values (A = 0.3376, R = 100, C0 = 1×10−6, wSC = 360π , and ζ =0.005)
and the limits at ± 10% the optimal values. Using JMP, we create 10,000 sample points
from the distributions and fixed value of ωbase, and compute 10,000 power outputs using
the six-variable model. See the distributions of the variables and the resulting power output
in Figure 5.9.

Figure 5.9: A±10%, R±10%, C0±10%, wSC±10%, ζ±10%, and resulting power distributions.

Letting the five variables vary 10% from their optimal values results in a mean power
output of 4.4875× 109. This mean power represents a 75% loss from the optimal value.
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Furthermore, the median power output is only 1.92× 109, an 89% loss from the optimal
power value. This means 50% of all the design points produce a loss of 89% or more of
the optimal value.

Next, we use insights derived from the analysis of the single variable manipulation to seek
more power output. From single variable manipulation we determine wSC to be the most
sensitive variable in the six-variable power generation model. In the following distribution
we allow wSC to vary only 5% from its optimal value, while allowing the other four vari-
ables a 10% variation. See the distributions of the variables and the resulting power output
in Figure 5.10.

Figure 5.10: A±10%, R±10%, C0±10%, wSC±5%, ζ±10%, and resulting power distributions.

Allowing wSC to vary only 5% from its optimal value while allowing the other four vari-
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ables a 10% variation results in a mean power of 7.6514×109, representing a 58% power
loss. This is a 17% improvement in mean power loss from allowing wSC 10% variability.
Additionally, the median power output is 5.8×109, a 68% power loss. The median power
loss is a 21% improvement over allowing wSC 10% variability.

Figure 5.10 illustrates the benefit of constraining the variation of the modal short circuit
net frequency. Next, we further tighten the variation of wSC to 1% while maintaining the
other four variables at 10% variation. See the distributions of the variables and the resulting
power output in Figure 5.11.

Figure 5.11: A±10%, R±10%, C0±10%, wSC±1%, ζ±10%, and resulting power distributions.

Further tightening the variation of the modal short circuit net frequency results in an even
greater mean power output of 1.599× 1010, representing only a 12% power loss from the
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optimal power. Furthermore, the reader will notice the power distribution changing drasti-
cally as well, resulting in a median power greater than the mean power. The median power
output is 1.7×1010, a power loss of only 7% from the optimal power.

We learn the importance of minimizing the variation of the modal short circuit frequency
from its optimal value. If we cannot guarantee a 1% variation constraint on wSC, is it
possible to make up power output by tightening the variation of the other four variables?
We attempt to answer the above question by allowing all five variables a 5% variation to
compare power output to previous results. See the distributions of the variables and the
resulting power output in Figure 5.12.

Figure 5.12: A±5%, R±5%, C0±5%, wSC±5%, ζ ±5%, and resulting power distributions.

From Figure 5.12 we see a power distribution similar to that of Figure 5.10. In fact, restrict-
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ing all variables to a 5% variation results in a mean power of 7.656× 109, representing a
58% power loss from the optimal power. This mean power is extremely similar to the re-
sults displayed in Figure 5.10. Additionally similar to the results from Figure 5.10, the
median power output is 5.75×109, representing a 69% power loss. We find tightening the
variation of the variables other than the modal short circuit net frequency results in negligi-
ble power improvement over when we restrict wSC to 5% variation and allow 10% variation
for the other four variables.

Our next question asks whether it is possible to generate a best case scenario by restricting
all variables to 1% variation. Do we see significant improvement over when we restrict wSC

to 1% variation while allowing the four other variables 10% variation? See the distributions
of the variables and the resulting power output in Figure 5.13.

Figure 5.13: A±1%, R±1%, C0±1%, wSC±1%, ζ ±1%, and resulting power distributions.

75



Comparing the power distribution in Figure 5.13 with the power distribution in Figure 5.11,
we notice the likelihood of producing power close to the optimal increases. The power
distribution in Figure 5.11, however, displays the possibility of producing power greater
than the optimal. As we discussed in single variable manipulation, this occurs when ζ is
smaller than its optimal value or C0 or R is greater than its optimal value.

Restraining all variables to a 1% variation results in a mean power of 1.601×1010, repre-
senting a 12% power loss, and a median power of 1.7×1010, representing a 7% power loss.
The restriction of all variables to a 1% variation results in a negligible benefit in terms of
mean and median power compared to restraining modal short circuit net frequency to 1%
variation while allowing the other four variables 10% variation.

We see when we tighten the variation of wSC to 1% and allow 10% variation of the other
variables there is a possibility of generating power greater than the optimal. During single
variable manipulation we determined decreasing ζ from its optimal value has the greatest
influence in increasing power. We also note decreasing ζ 10% increases power slightly
more than increasing ζ 10% decreases power. Are we able to produce a higher mean
and median power if we allow ζ to vary 10% while restricting all other variables to 1%
variation? See the distributions of the variables and the resulting power output in Figure
5.14.
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Figure 5.14: A±1%, R±1%, C0±1%, wSC±1%, ζ ±10%, and resulting power distributions.

The power distribution in Figure 5.14 looks extremely similar to the power distribution in
Figure 5.11 when we restrict wSC to 1% variation while allowing 10% variation for all other
variables. For both power distributions there are possibilities of producing power greater
than the optimal and a high likelihood of producing power approximate to the optimal.
Additionally, the power distributions have extremely similar means and medians. The mean
and median power produced for the distribution above are 1.604× 1010 and 1.7× 1010,
respectively. This accounts for a mean power loss of 12% and a median power loss of 7%.

Although not an overwhelming front runner, we find that the best mean power results from
restricting all variables to 1% variation while allowing ζ 10% variation. This produces a
difference of only 3×107 greater power than restricting all variables to 1% variation.
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The biggest takeaway from the six-variable robustness analysis is the importance in mini-
mizing the variation of the modal short circuit net frequency (wSC) from its optimal value.
The restriction of variation for all other variables should be a distant second priority. In
fact allowing the modal damping ratio (ζ ) to vary from its optimal improves mean power
production slightly.

78



CHAPTER 6:
Conclusion

6.1 Summary of Results
The military is looking for alternative energy sources to provide deployed bases with elec-
tricity. Diesel fueled generators and their large logistics tails have proven expensive and a
liability to force protection. The alternative energy focus for now is solar, but solar arrays
require infrastructure and space. Piezoelectric generators, combined with other renewable
energy means, could provide a more efficient means of electricity production to fossil fuel
powered generators. Additionally, new methods of energy storage could eventually facili-
tate alternative energy use in military applications [33].

This paper attempted to find the optimal designs involving material parameters in the piezo-
electric generator as well as the generator’s environment in order to maximize electric out-
put. Our hope is that the results of this paper will serve as a step towards the practical
application of efficient piezoelectric generators and contribute to preserving the combat ca-
pability of the US Military. Through the study of two mathematical models we found the
optimal values for variables given constrained ranges. We presented the optimal values for
the three-variable model in Table 5.1 and the optimal values for the six-variable model in
Table 5.12.

6.1.1 Three-Variable Model Analysis
In the detailed analysis of the three-variable model, we study the power as both a function of
normalized frequency and a function of modal damping ratio and frequency. When we ana-
lyze power as a function of normalized frequency, we find that generating maximum power
the optimal normalized frequency (x = ω

ωn
) depends on the value of the modal damping

ratio (ζ ). As ζ approaches zero the optimal normalized frequency approaches one. When
we analyze power as a function of modal damping ratio and normalized frequency, we are
able to visualize the potential power generation capability by minimizing ζ and setting the
normalized frequency to one. Finally, we use Roundy and Wright’s results [15] to support
our simple three-variable model.
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6.1.2 Six-Variable Model Analysis
Through the analysis of the six-variable model optimization results we find that power in-
creases as the base motion driving frequency (ωbase), net clamped capacity of piezoelectric
material (C0), and modal short circuit net frequency (wSC) increases and modal damping
ratio (ζ ) decreases. The optimal values for the electromechanical coupling coefficient (A)
and load resistance (R) vary depending on sampling method. There appears to be a corre-
lation in power output and the difference of ωbase and wSC.

6.1.3 Sampling Methods
In our search for optimal values to maximize power production we use two sampling meth-
ods, mk factorial and nearly orthogonal and balance Latin hypercubes (NOBLH). Although
the NOBLH design provides nearly orthogonal samplings with fair space-filling properties,
its failure to effectively sample the extremes of the design space leads to less than optimal
results. In both of our models, the optimal variable values exists at the extremes of the
variable ranges in all but one variable (A). mK variable sampling chooses design points
incorporating the optimal values, while NOBLH does not.

Had the models required more computational rigor (more factors or computations) the
NOBLH samplings’ efficiency might have provided insights into optimization where mk

factorial design would have been too costly. However, with both our three- and six-variable
models we do not have difficulty evaluating mk factorial samplings even with double digit
levels (m).

6.1.4 Iterative Method
The NOBLH iterative methods we use for the three- and six-variable models are ad hoc
methods that arose from trying to glean more insight about our models’ behavior. Had
we been interested solely in identifying an optimal solution, then an adaptive sequential
procedure, such as response surface methodology [34], STRONG [35], or other simulation
optimization approaches would require much less sampling.

6.1.5 Robustness Analysis
After determining the optimal variable values, our analysis turns to evaluating the robust-
ness of the variables by evaluating power generation while incorporating deviations from
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the optimal variable values. In the three-variable model, we find the separation between the
frequency of excitation of the base (ω) and natural frequency of the generator (ωn) to be
the most sensitive variable. While the designers of the piezoelectric generator should seek
to minimize the generator’s modal damping ratio (ζ ), the designer’s priority should be to
precisely match the generator’s natural frequency with the frequency of excitation driving
the generator.

The precise matching of the base motion driving frequency (ωbase) to the modal short circuit
net frequency (wSC) proves to be the most important factor in minimizing power loss during
the robustness analysis of the six-variable model. Setting the electromagnetic coupling
coefficient (A), load resistance (R), and net clamped capacity of piezoelectric material (C0)
to their respective optimal value is a much lower priority for the piezoelectric generator
designer. In fact, our robustness study concludes if the likelihood of negative variation is
greater than or equal to positive variation for the design’s modal damping ratio, it is best
to let ζ vary from its optimal value while restraining the variation of other variables from
their optimal values in order to produce the greatest mean power output.

6.2 Further Studies
Through the analysis of two mathematical models, we determine optimal values for each
variable, given a practical variable range in order to maximize power generation of a piezo-
electric generator. Additional studies are needed to propel our findings into practical appli-
cation of piezoelectric materials for energy harvesting.

6.2.1 PDE Solution
To derive the nine variable model in Chapter 3, we use a one-mode expansion method.
An alternative methods to derive models would be to use a partial differential equation
expansion [36]. This mathematical derivation would provide an additional piezoelectrical
generator model to conduct further optimization studies.

6.2.2 Variable Range Adjustment
We derive the variable ranges through research of materials specifications and previous
experimental measurements. Personnel more experienced in vibration, piezoelectric mate-
rials, and electrical engineering will have the ability to further adjust the ranges for each
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variable. Using our methods of analysis and power generation models, it is possible to find
updated optimal values for each variable.

6.2.3 Simulation Optimization
In future studies, an automated simulation optimization technique would be a better ap-
proach for finding optimal nominal settings for the variables while keeping sampling re-
quirements to a minimum.

6.2.4 Robustness Analysis Expansion
Our efforts study the robustness of the two power generation models based on both single
and multiple variable manipulation. In both the three- and six-variable power manipulation,
we assume the environment to be static. In other words, we assume the frequency of
excitation (ω) and the base motion driving frequency to be constant for the three- and
six-variable models, respectively. This enables us to focus our robustness study on fewer
variables.

In practical applications, the frequency of the driving vibration may not prove constant.
The vibration of an air conditioning duct may change based on temperature, humidity, fan
speed, or a myriad other factors. Further robustness analysis focused on the base motion
driving frequency may lead to a better piezoelectric generator power output in varying
environmental conditions.

6.2.5 Model Adjustment
The two mathematical models we use do not serve as the only models to simulate piezoelec-
tric power production. Further studies could include additional models or adjustments to
the two models used in this study. The optimization and robustness analysis methodologies
in this study could serve as a framework in the study of new models.

6.2.6 Practical Experimentation
We gear the efforts of this paper in order to find insights into maximizing piezoelectric
generator power output. Using our findings, engineers can attempt to match our modeled
results using a prototype piezoelectric generator designed with our optimal variable val-
ues. Feedback from the results of the experimentation could serve to adjust our models or
variable limits.
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APPENDIX: MATLAB Codes

A.1 Three-Variable Orthogonality Computation Code

%3 Variable Orthogonality Computation

%Created April 2015 by Russell Nelson

clear all

%Import design points

filename = 'Factorial3var.csv';

%Rename file

NOLH=csvread(filename);

%Compute orthogonality for each variable

avgomega = mean(NOLH(:,1));

avgomega_n = mean(NOLH(:,2));

avgzeta = mean(NOLH(:,3));

numerator1 = 0;

numerator2 = 0;

numerator3 = 0;

denom11 = 0;

denom12 = 0;

denom21 = 0;

denom22 = 0;

denom31 = 0;

denom32 = 0;

for i = 1:1000

omegai = NOLH(i,1);

omega_ni = NOLH(i,2);

numerator1 = numerator1 + (omegai-avgomega)*(omega_ni-avgomega_n);

denom11 = denom11 + (omegai-avgomega)^2;

denom12 = denom12 + (omega_ni-avgomega_n)^2;

end

%Outputs correlation for omega to omega_n

Ortho_omega_omega_n=numerator1/sqrt(denom11*denom12)
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for i = 1:1000

omegai = NOLH(i,1);

zetai = NOLH(i,3);

numerator2 = numerator2 + (omegai-avgomega)*(zetai-avgzeta);

denom21 = denom21 + (omegai-avgomega)^2;

denom22 = denom22 + (zetai-avgzeta)^2;

end

%Outputs correlation for omega to zeta

Ortho_omega_zeta = numerator2/sqrt(denom21*denom22)

for i = 1:1000

omega_ni = NOLH(i,2);

zetai = NOLH(i,3);

numerator3 = numerator3 + (omega_ni-avgomega_n)*(zetai-avgzeta);

denom31 = denom31 + (omega_ni-avgomega_n)^2;

denom32 = denom32 + (zetai-avgzeta)^2;

end

%Outputs correlation for omega_n to zeta

Ortho_omega_n_zeta = numerator3/sqrt(denom31*denom32)

A.2 Six-Variable Orthogonality Computation Code

%6 Variable Orthogonality Computation

%Created April 2015 by Russell Nelson

clear all

%Import design points

filename = 'Factorial6var.csv';

%Rename file

NOLH=csvread(filename);

%Compute orthogonality for each variable

num=0;

den1=0;

den2=0;
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for d = 2:6

for i =1:15625

Ai = NOLH(i,1);

Bi = NOLH(i,d);

avA = mean(NOLH(:,1));

avB = mean(NOLH(:,d));

num = num + (Ai-avA)*(Bi-avB);

den1 = den1 +(Ai-avA)^2;

den2 = den2 +(Bi-avB)^2;

end

OrthoA(d)= num/sqrt(den1*den2);

end

num=0;

den1=0;

den2=0;

for d = 3:6

for i =1:15625

Ai = NOLH(i,2);

Bi = NOLH(i,d);

avA = mean(NOLH(:,2));

avB = mean(NOLH(:,d));

num = num + (Ai-avA)*(Bi-avB);

den1 = den1 +(Ai-avA)^2;

den2 = den2 +(Bi-avB)^2;

end

OrthoR(d)= num/sqrt(den1*den2);

end

num=0;

den1=0;

den2=0;

for d = 4:6

for i =1:15625

Ai = NOLH(i,3);

Bi = NOLH(i,d);

avA = mean(NOLH(:,3));

avB = mean(NOLH(:,d));

num = num + (Ai-avA)*(Bi-avB);
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den1 = den1 +(Ai-avA)^2;

den2 = den2 +(Bi-avB)^2;

end

OrthoO(d)= num/sqrt(den1*den2);

end

num=0;

den1=0;

den2=0;

for d = 5:6

for i =1:15625

Ai = NOLH(i,4);

Bi = NOLH(i,d);

avA = mean(NOLH(:,4));

avB = mean(NOLH(:,d));

num = num + (Ai-avA)*(Bi-avB);

den1 = den1 +(Ai-avA)^2;

den2 = den2 +(Bi-avB)^2;

end

OrthoC(d)= num/sqrt(den1*den2);

end

num=0;

den1=0;

den2=0;

for d = 6:6

for i =1:15625

Ai = NOLH(i,5);

Bi = NOLH(i,d);

avA = mean(NOLH(:,5));

avB = mean(NOLH(:,d));

num = num + (Ai-avA)*(Bi-avB);

den1 = den1 +(Ai-avA)^2;

den2 = den2 +(Bi-avB)^2;

end

OrthoW(d)= num/sqrt(den1*den2);

end
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A.3 Euclidean Maximin Distance Code

%Euclidean Maximin Distance Calculator

%Created April 2015 by Russell Nelson

clear all

%Import factorial design points to use

%as reference

file = 'Factorial3var.csv';

base = csvread(file);

%Import Design Points

filename = 'Factorial3var.csv';

%Rename file

A=csvread(filename);

%Establish number of variables (n)

%and number of design points (k)

[n,k] = size(NOLH);

d=0;

i=1;

%Normalizing vectors

for p = 1:k

avg = (max(base(:,p))-min(base(:,p)))/2+min(base(:,p));

for q = 1:n

A(q,p) = (A(q,p)-avg)/avg;

end

end

%Computing all distances

for s = 1:n

for t = 2:n

if s == t

else

for j = 1:k

d = d + abs(A(s,j)-A(t,j))^2;
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end

d = sqrt(d);

distance(i) = d;

d=0;

i = i+1;

end

end

end

%Finding the Euclidean maximin distance

min(distance)

A.4 Three-Variable Model Optimization Code
for Factorial Sampling

%Optimal Power for Three Variable Model (Factorial Sampling Method)

%Created January 2015 by Russell Nelson.

%The following script evaluates the average power dissipated by the load

%resistor of a piezoelectric generator. The equation, consisting of 3

%independent variables, was derived by Professor Hong Zhou.

clear all

a=1;

b=1;

c=1;

%Set variable limits (range)

omega_min_lim = 120*pi;

omega_max_lim = 360*pi;

omega_n_min_lim = 120*pi;

omega_n_max_lim = 360*pi;

zeta_min_lim = 0.005;

zeta_max_lim = 0.02;

%Set number of levels per variables

levels = 100;
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%Computes values of power for all combinations of

%variables at all levels

for omega = linspace(omega_min_lim,omega_max_lim,levels)

b=1;

for omega_n = linspace(omega_n_min_lim,omega_n_max_lim,levels)

c=1;

for zeta = linspace(zeta_min_lim,zeta_max_lim,levels)

P(a,b,c) = (zeta*((omega/omega_n)^3)*(omega^3))/...

((1-((omega^2)/(omega_n^2)))^2+...

(2*zeta*(omega/omega_n))^2);

c=c+1;

end

b=b+1;

end

a=a+1;

end

%Vectorizes P matrix

Pvec=P(:);

%Find the maximum power in Pvec

[v,I]=max(Pvec)

%Determines the location of each variable level for maximum power

[d,e,f]=ind2sub(size(P),I);

%Determines the value for each variable at maximum power

omega = linspace(omega_min_lim,omega_max_lim,levels);

omegaopt=omega(d)

omega_n = linspace(omega_n_min_lim,omega_n_max_lim,levels);

omega_nopt=omega_n(e)

zeta = linspace(zeta_min_lim,zeta_max_lim,levels);

zetaopt=zeta(f)

A.5 Three-Variable Model Optimization Code
for NOBLH Sampling
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%3 Variable Model Optimization Code for NOBLH Sampling

%Created January 2015 by Russell Nelson

%The following script evaluates the average power dissipated by the load

%resistor of a piezoelectric generator. The equation, consisting of 3

%independent variables, was derived by Professor Hong Zhou.

clear all

%Import design points

filename = 'NOL3var.csv';

%Rename file

NOLH=csvread(filename);

%Compute power for all design points

for i =1:512

omega=NOLH(i,1);

omega_n=NOLH(i,2);

zeta=NOLH(i,3);

Power(1,i) = (zeta*((omega/omega_n)^3)*(omega^3))/...

((1-((omega^2)/(omega_n^2)))^2+(2*zeta*(omega/omega_n))^2);

end

%Identify maximum power and associated design point

[x,y]=max(Power)

A.6 Six-Variable Model Optimization Code
for Factorial Sampling

%Optimal Power for Six Variable Model (Factorial Sampling Method)

%Created January 2015 by Russell Nelson

%The following script evaluates the average power dissipated by the load

%resistor of a piezoelectric generator. The equation, consisting of 6

%independent variables, used was derived by Professor Hong Zhou.

90



clear all

a=1

b=1;

c=1;

d=1;

e=1;

f=1;

%Set variable limits(range)

A_min_lim = 0.01;

A_max_lim = 0.99;

R_min_lim = .02;

R_max_lim = 100;

Obase_min_lim = 120*pi;

Obase_max_lim = 360*pi;

C0_min_lim = 0.00000001;

C0_max_lim = 0.000001;

WSC_min_lim = 120*pi;

WSC_max_lim = 360*pi;

zeta_min_lim = 0.005;

zeta_max_lim = 0.02;

%Set number of levels per variable

levels=12;

%Computes values of power for all combinations of

%variables at all levels

for A = linspace(A_min_lim,A_max_lim,levels)

b=1;

for R = linspace(R_min_lim,R_max_lim,levels)

c=1;

for Obase = linspace(Obase_min_lim,Obase_max_lim,levels)

d=1;

for C0 = linspace(C0_min_lim,C0_max_lim,levels)

e=1;

for WSC = linspace(WSC_min_lim,WSC_max_lim,levels)

f=1;

for zeta = linspace(zeta_min_lim,zeta_max_lim,levels)
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P(a,b,c,d,e,f) =(A^2*R*Obase^6*(1+C0^2*Obase^2*R^2)^2)/...

(2*(((-1*Obase^2+WSC^2)*(1+C0^2*Obase^2*R^2)+(C0*A^2)*...

Obase^2*R^2)^2+(2*WSC*zeta*Obase*(1+C0^2*Obase^2*R^2)...

+A^2*Obase*R)^2));

f=f+1;

end

e=e+1;

end

d=d+1;

end

c=c+1;

end

b=b+1;

end

a=a+1;

end

%Vectorizes P matrix

Pvec=P(:);

%Finds the maximum power in Pvec

[v,I] = max(Pvec)

%Determines the location of each variable level for maximum power

[j,k,l,m,n,o]=ind2sub(size(P),I);

%Determines the value for each variable at maximum power

A = linspace(A_min_lim,A_max_lim,levels);

Aopt = A(j)

R = linspace(R_min_lim,R_max_lim,levels);

Ropt = R(k)

Obase = linspace(Obase_min_lim,Obase_max_lim,levels);

Obaseopt = Obase(l)

C0 = linspace(C0_min_lim,C0_max_lim,levels);

C0opt = C0(m)

WSC = linspace(WSC_min_lim,WSC_max_lim,levels);

WSCopt = WSC(n)

zeta = linspace(zeta_min_lim,zeta_max_lim,levels);

zetaopt = zeta(o)
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A.7 Six-Variable Model Optimization Code
for NOBLH Sampling

%6 Variable Model Optimization Code for NOBLH Sampling

%Created January 2015 by Russell Nelson

%The following script evaluates the average power dissipated by the load

%resistor of a piezoelectric generator. The equation, consisting of 6

%independent variables, used was derived by Professor Hong Zhou.

clear all

%Import design points

filename = 'NOL6var.csv';

%Rename file

NOLH=csvread(filename);

%Compute power for all design points

for i =1:512

A=NOLH(i,1);

R=NOLH(i,2);

Obase=NOLH(i,3);

C0=NOLH(i,4);

WSC=NOLH(i,5);

zeta=NOLH(i,6);

Power(1,i) =(A^2*R*Obase^6*(1+C0^2*Obase^2*R^2)^2)/...

(2*(((-1*Obase^2+WSC^2)*(1+C0^2*Obase^2*R^2)+(C0*A^2)*...

Obase^2*R^2)^2+(2*WSC*zeta*Obase*(1+C0^2*Obase^2*R^2)...

+A^2*Obase*R)^2));

end

%Identify maximum power and associated design point

[x,y]=max(Power)
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